Question and Answers Forum

All Questions      Topic List

None Questions

Previous in All Question      Next in All Question      

Previous in None      Next in None      

Question Number 68171 by naka3546 last updated on 06/Sep/19

Commented by mathmax by abdo last updated on 06/Sep/19

  (√(5−2(√x) )) is not defined on +∞ !

$$ \\ $$$$\sqrt{\mathrm{5}−\mathrm{2}\sqrt{{x}}\:}\:{is}\:{not}\:{defined}\:{on}\:+\infty\:! \\ $$

Commented by mathmax by abdo last updated on 07/Sep/19

i think the Q here is find lim_(x→+∞) (((√(2(√x)+5))−(√(2(√x)−5)))/((√x)−1))=lim_(x→+∞) f(x)  let treat this  we use tbe changement (√x)=t   lim_(x→+∞) f(x)=lim_(t→+∞)  (((√(2t+5))−(√(2t−5)))/(t−1))  =lim_(t→+∞)  ((2t+5−2t+5)/((t−1)((√(2t+5))+(√(2t−5))))) =lim_(t→+∞) ((10)/((t−1)((√(2t+5))+(√(2t−5))))))  =0

$${i}\:{think}\:{the}\:{Q}\:{here}\:{is}\:{find}\:{lim}_{{x}\rightarrow+\infty} \frac{\sqrt{\mathrm{2}\sqrt{{x}}+\mathrm{5}}−\sqrt{\mathrm{2}\sqrt{{x}}−\mathrm{5}}}{\sqrt{{x}}−\mathrm{1}}={lim}_{{x}\rightarrow+\infty} {f}\left({x}\right) \\ $$$${let}\:{treat}\:{this}\:\:{we}\:{use}\:{tbe}\:{changement}\:\sqrt{{x}}={t}\: \\ $$$${lim}_{{x}\rightarrow+\infty} {f}\left({x}\right)={lim}_{{t}\rightarrow+\infty} \:\frac{\sqrt{\mathrm{2}{t}+\mathrm{5}}−\sqrt{\mathrm{2}{t}−\mathrm{5}}}{{t}−\mathrm{1}} \\ $$$$\left.={lim}_{{t}\rightarrow+\infty} \:\frac{\mathrm{2}{t}+\mathrm{5}−\mathrm{2}{t}+\mathrm{5}}{\left({t}−\mathrm{1}\right)\left(\sqrt{\mathrm{2}{t}+\mathrm{5}}+\sqrt{\mathrm{2}{t}−\mathrm{5}}\right)}\:={lim}_{{t}\rightarrow+\infty} \frac{\mathrm{10}}{\left({t}−\mathrm{1}\right)\left(\sqrt{\mathrm{2}{t}+\mathrm{5}}+\sqrt{\left.\mathrm{2}{t}−\mathrm{5}\right)}\right.}\right) \\ $$$$=\mathrm{0} \\ $$$$ \\ $$

Answered by Kunal12588 last updated on 06/Sep/19

lim_(x→∞) (((√(5+2(√x)))−(√(5−2(√x))))/((√x)−1))  (√x)=t ; x→∞ ⇒ t→∞  lim_(t→∞) (((√(5+2t))−(√(5−2t)))/(t−1))  =lim_(t→∞) (((√((5/t^2 )+(2/t)))−(√((5/t^2 )−(2/t))))/(1−(1/t)))  =(0/1)=0

$$\underset{{x}\rightarrow\infty} {{lim}}\frac{\sqrt{\mathrm{5}+\mathrm{2}\sqrt{{x}}}−\sqrt{\mathrm{5}−\mathrm{2}\sqrt{{x}}}}{\sqrt{{x}}−\mathrm{1}} \\ $$$$\sqrt{{x}}={t}\:;\:{x}\rightarrow\infty\:\Rightarrow\:{t}\rightarrow\infty \\ $$$$\underset{{t}\rightarrow\infty} {{lim}}\frac{\sqrt{\mathrm{5}+\mathrm{2}{t}}−\sqrt{\mathrm{5}−\mathrm{2}{t}}}{{t}−\mathrm{1}} \\ $$$$=\underset{{t}\rightarrow\infty} {{lim}}\frac{\sqrt{\frac{\mathrm{5}}{{t}^{\mathrm{2}} }+\frac{\mathrm{2}}{{t}}}−\sqrt{\frac{\mathrm{5}}{{t}^{\mathrm{2}} }−\frac{\mathrm{2}}{{t}}}}{\mathrm{1}−\frac{\mathrm{1}}{{t}}} \\ $$$$=\frac{\mathrm{0}}{\mathrm{1}}=\mathrm{0} \\ $$

Terms of Service

Privacy Policy

Contact: info@tinkutara.com