Question and Answers Forum

All Questions      Topic List

Algebra Questions

Previous in All Question      Next in All Question      

Previous in Algebra      Next in Algebra      

Question Number 67826 by peter frank last updated on 31/Aug/19

Commented by gunawan last updated on 01/Sep/19

x=1+a+a^2 +a^3 +..  x=(1/(1−a)) ⇒1− a=(1/x)⇒ a=1−(1/x)=((x−1)/x)  y=1+b+b^2 +b^3 +...  y=(1/(1−b)) ⇒ 1−b=(1/y) ⇒b=((y−1)/y)   1+(ab)+(ab)^2 +(ab)^3 +..  =(1/(1−ab))=(1/(((xy)/(xy))−((((x−1)(y−1))/(xy)))))  =(1/((((xy−(xy−x−y+1))/(xy)))))=((xy)/(x+y−1))

$${x}=\mathrm{1}+{a}+{a}^{\mathrm{2}} +{a}^{\mathrm{3}} +.. \\ $$$${x}=\frac{\mathrm{1}}{\mathrm{1}−{a}}\:\Rightarrow\mathrm{1}−\:{a}=\frac{\mathrm{1}}{{x}}\Rightarrow\:{a}=\mathrm{1}−\frac{\mathrm{1}}{{x}}=\frac{{x}−\mathrm{1}}{{x}} \\ $$$${y}=\mathrm{1}+{b}+{b}^{\mathrm{2}} +{b}^{\mathrm{3}} +... \\ $$$${y}=\frac{\mathrm{1}}{\mathrm{1}−{b}}\:\Rightarrow\:\mathrm{1}−{b}=\frac{\mathrm{1}}{{y}}\:\Rightarrow{b}=\frac{{y}−\mathrm{1}}{{y}}\: \\ $$$$\mathrm{1}+\left({ab}\right)+\left({ab}\right)^{\mathrm{2}} +\left({ab}\right)^{\mathrm{3}} +.. \\ $$$$=\frac{\mathrm{1}}{\mathrm{1}−{ab}}=\frac{\mathrm{1}}{\frac{{xy}}{{xy}}−\left(\frac{\left({x}−\mathrm{1}\right)\left({y}−\mathrm{1}\right)}{{xy}}\right)} \\ $$$$=\frac{\mathrm{1}}{\left(\frac{{xy}−\left({xy}−{x}−{y}+\mathrm{1}\right)}{{xy}}\right)}=\frac{{xy}}{{x}+{y}−\mathrm{1}} \\ $$

Commented by mathmax by abdo last updated on 01/Sep/19

its not correct if ∣a∣≥1 or  ∣b∣≥1...!

$${its}\:{not}\:{correct}\:{if}\:\mid{a}\mid\geqslant\mathrm{1}\:{or}\:\:\mid{b}\mid\geqslant\mathrm{1}...! \\ $$

Commented by peter frank last updated on 01/Sep/19

thank you

$${thank}\:{you}\: \\ $$

Commented by peter frank last updated on 01/Sep/19

thank you

$${thank}\:{you}\: \\ $$

Answered by mind is power last updated on 01/Sep/19

x=(1/(1−a))⇒a=((x−1)/x)  y=(1/(1−b))⇒b=((y−1)/y)  ⇒1+ab+a^2 b^2 +.....=Σ(ab)^k =((((y−1)/y))(((x−1)/x)))^k =(1/(1−(((x−1)/x))(((y−1)/y))))=((xy)/(xy−xy+y+x−1))=((xy)/(x+y−1))

$${x}=\frac{\mathrm{1}}{\mathrm{1}−{a}}\Rightarrow{a}=\frac{{x}−\mathrm{1}}{{x}} \\ $$$${y}=\frac{\mathrm{1}}{\mathrm{1}−{b}}\Rightarrow{b}=\frac{{y}−\mathrm{1}}{{y}} \\ $$$$\Rightarrow\mathrm{1}+{ab}+{a}^{\mathrm{2}} {b}^{\mathrm{2}} +.....=\Sigma\left({ab}\right)^{{k}} =\left(\left(\frac{{y}−\mathrm{1}}{{y}}\right)\left(\frac{{x}−\mathrm{1}}{{x}}\right)\right)^{{k}} =\frac{\mathrm{1}}{\mathrm{1}−\left(\frac{{x}−\mathrm{1}}{{x}}\right)\left(\frac{{y}−\mathrm{1}}{{y}}\right)}=\frac{{xy}}{{xy}−{xy}+{y}+{x}−\mathrm{1}}=\frac{{xy}}{{x}+{y}−\mathrm{1}} \\ $$

Answered by rrebo5637@gmail.com last updated on 01/Sep/19

Terms of Service

Privacy Policy

Contact: info@tinkutara.com