Question and Answers Forum

All Questions      Topic List

None Questions

Previous in All Question      Next in All Question      

Previous in None      Next in None      

Question Number 67561 by azizullah last updated on 28/Aug/19

Answered by Rasheed.Sindhi last updated on 28/Aug/19

Let ((2x+1)/((x^2 +1)(x−1)))=((Ax+B)/(x^2 +1))+(C/(x−1))          (Ax+B)(x−1)+C(x^2 +1)=2x+1  x=1⇒2C=3⇒C=3/2  Ax^2 +Bx−Ax−B+Cx^2 +C=2x+1  (A+C)x^2 +(B−A)x+C−B=0x^2 +2x+1      A+C=0⇒A=−C=−3/2      B−A=2⇒B=A+2=−3/2 +2=1/2      C−B=1⇒3/2−1/2=1     ((2x+1)/((x^2 +1)(x−1)))=((−(3/2)x+(1/2))/(x^2 +1))+((3/2)/(x−1))                      =((−3x+1)/(2(x^2 +1)))+(3/(2(x−1)))

$${Let}\:\frac{\mathrm{2}{x}+\mathrm{1}}{\left({x}^{\mathrm{2}} +\mathrm{1}\right)\left({x}−\mathrm{1}\right)}=\frac{{Ax}+{B}}{{x}^{\mathrm{2}} +\mathrm{1}}+\frac{{C}}{{x}−\mathrm{1}} \\ $$$$\:\:\:\:\:\:\:\:\left({Ax}+{B}\right)\left({x}−\mathrm{1}\right)+{C}\left({x}^{\mathrm{2}} +\mathrm{1}\right)=\mathrm{2}{x}+\mathrm{1} \\ $$$${x}=\mathrm{1}\Rightarrow\mathrm{2}{C}=\mathrm{3}\Rightarrow{C}=\mathrm{3}/\mathrm{2} \\ $$$${Ax}^{\mathrm{2}} +{Bx}−{Ax}−{B}+{Cx}^{\mathrm{2}} +{C}=\mathrm{2}{x}+\mathrm{1} \\ $$$$\left({A}+{C}\right){x}^{\mathrm{2}} +\left({B}−{A}\right){x}+{C}−{B}=\mathrm{0}{x}^{\mathrm{2}} +\mathrm{2}{x}+\mathrm{1} \\ $$$$\:\:\:\:{A}+{C}=\mathrm{0}\Rightarrow{A}=−{C}=−\mathrm{3}/\mathrm{2} \\ $$$$\:\:\:\:{B}−{A}=\mathrm{2}\Rightarrow{B}={A}+\mathrm{2}=−\mathrm{3}/\mathrm{2}\:+\mathrm{2}=\mathrm{1}/\mathrm{2} \\ $$$$\:\:\:\:{C}−{B}=\mathrm{1}\Rightarrow\mathrm{3}/\mathrm{2}−\mathrm{1}/\mathrm{2}=\mathrm{1} \\ $$$$ \\ $$$$\:\frac{\mathrm{2}{x}+\mathrm{1}}{\left({x}^{\mathrm{2}} +\mathrm{1}\right)\left({x}−\mathrm{1}\right)}=\frac{−\frac{\mathrm{3}}{\mathrm{2}}{x}+\frac{\mathrm{1}}{\mathrm{2}}}{{x}^{\mathrm{2}} +\mathrm{1}}+\frac{\frac{\mathrm{3}}{\mathrm{2}}}{{x}−\mathrm{1}} \\ $$$$\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:=\frac{−\mathrm{3}{x}+\mathrm{1}}{\mathrm{2}\left({x}^{\mathrm{2}} +\mathrm{1}\right)}+\frac{\mathrm{3}}{\mathrm{2}\left({x}−\mathrm{1}\right)} \\ $$$$ \\ $$

Commented by azizullah last updated on 29/Aug/19

       Sir Alot of thanks!

$$\:\:\:\:\:\:\:\boldsymbol{\mathrm{Sir}}\:\boldsymbol{\mathrm{Alot}}\:\boldsymbol{\mathrm{of}}\:\boldsymbol{\mathrm{thanks}}! \\ $$

Commented by Rasheed.Sindhi last updated on 30/Aug/19

You're welcome mr Azizullah!

Terms of Service

Privacy Policy

Contact: info@tinkutara.com