| 
 | ||
| Question Number 67535 by mr W last updated on 28/Aug/19 | ||
|  | ||
| Commented by mr W last updated on 28/Aug/19 | ||
|  | ||
| $${find}\:{the}\:{area}\:{of}\:{the}\:{square}\:{A}=? \\ $$ | ||
| Commented by Prithwish sen last updated on 28/Aug/19 | ||
|  | ||
| $$\boldsymbol{\mathrm{Area}}\:=\:\frac{\boldsymbol{\mathrm{a}}^{\mathrm{2}} +\boldsymbol{\mathrm{b}}^{\mathrm{2}} +\boldsymbol{\mathrm{c}}^{\mathrm{2}} }{\mathrm{2}} \\ $$ | ||
| Commented by petrochengula last updated on 28/Aug/19 | ||
|  | ||
| $${Area}=\frac{{a}^{\mathrm{2}} +{b}^{\mathrm{2}} +{c}^{\mathrm{2}} +\mathrm{2}{ac}}{\mathrm{2}} \\ $$ | ||
| Commented by mr W last updated on 28/Aug/19 | ||
|  | ||
| $${thanks}\:{sirs}! \\ $$$${A}=\frac{{a}^{\mathrm{2}} +{b}^{\mathrm{2}} +{c}^{\mathrm{2}} +\mathrm{2}{ac}}{\mathrm{2}}\:{is}\:{the}\:{right}\:{answer}. \\ $$ | ||
| Commented by Prithwish sen last updated on 28/Aug/19 | ||
|  | ||
| $$\mathrm{Sorry}\:\mathrm{it}\:\mathrm{will}\:\mathrm{be}\:\left(\mathrm{a}+\mathrm{c}\right)^{\mathrm{2}} \:.\:\mathrm{Thank}\:\mathrm{you}\:\mathrm{sir} \\ $$ | ||
| Answered by mr W last updated on 28/Aug/19 | ||
|  | ||
| Commented by mr W last updated on 28/Aug/19 | ||
|  | ||
| $${diagonal}\:{of}\:{square}={d} \\ $$$${d}^{\mathrm{2}} ={b}^{\mathrm{2}} +\left({a}+{c}\right)^{\mathrm{2}} \\ $$$${area}\:{of}\:{square}={A} \\ $$$${A}=\left(\frac{{d}}{\sqrt{\mathrm{2}}}\right)^{\mathrm{2}} =\frac{{d}^{\mathrm{2}} }{\mathrm{2}}=\frac{{b}^{\mathrm{2}} +\left({a}+{c}\right)^{\mathrm{2}} }{\mathrm{2}} \\ $$ | ||
| Commented by Prithwish sen last updated on 28/Aug/19 | ||
|  | ||
| $$\mathrm{Thanks}\:\mathrm{a}\:\mathrm{lot}. \\ $$ | ||
| Commented by TawaTawa last updated on 28/Aug/19 | ||
|  | ||
| $$\mathrm{Wow},\:\mathrm{God}\:\mathrm{bless}\:\mathrm{you}\:\mathrm{sir}. \\ $$ | ||
| Commented by Rasheed.Sindhi last updated on 28/Aug/19 | ||
|  | ||
| $${The}\:{red}\:{line}\:{segments}\:\left({having}\:{lengths}\right. \\ $$$$\left.{a},{b}\:\&\:{c}\right)\:{divide}\:{the}\:{square}\:{into}\:{two} \\ $$$${parts}.{Find}\:{out}\:{the}\:{area}\:{of}\:{any}\:{part}. \\ $$ | ||
| Commented by mr W last updated on 28/Aug/19 | ||
|  | ||
| $${segment}\:{b}\:{is}\:{divided}\:{by}\:{the}\:{diagonal} \\ $$$${in}\:{ratio}\:{a}:{c}. \\ $$$${assume}\:{c}\geqslant{a}. \\ $$$$\Delta{A}=\frac{{c}}{\mathrm{2}}×\frac{{c}}{{a}+{c}}×{b}−\frac{{a}}{\mathrm{2}}×\frac{{a}}{{a}+{c}}×{b} \\ $$$$=\frac{{b}\left({c}^{\mathrm{2}} −{a}^{\mathrm{2}} \right)}{\mathrm{2}\left({a}+{c}\right)}=\frac{{b}\left({c}−{a}\right)}{\mathrm{2}} \\ $$$${A}_{\mathrm{1}} =\frac{{A}}{\mathrm{2}}+\Delta{A}=\frac{{b}^{\mathrm{2}} +\left({a}+{c}\right)^{\mathrm{2}} +\mathrm{2}{b}\left({c}−{a}\right)}{\mathrm{4}} \\ $$$${A}_{\mathrm{2}} =\frac{{A}}{\mathrm{2}}−\Delta{A}=\frac{{b}^{\mathrm{2}} +\left({a}+{c}\right)^{\mathrm{2}} −\mathrm{2}{b}\left({c}−{a}\right)}{\mathrm{4}} \\ $$ | ||
| Commented by Rasheed.Sindhi last updated on 29/Aug/19 | ||
| سائين توھان جي مھرباني!Thanks s¡r | ||
| Commented by mr W last updated on 30/Aug/19 | ||
|  | ||
| $${Tawhaan}\:{jee}\:{mehrbaani}! \\ $$ | ||
| Commented by Rasheed.Sindhi last updated on 30/Aug/19 | ||
|  | ||
| $$\mathrm{You}\:\mathrm{have}\:\mathrm{written}\:\boldsymbol{\mathrm{exactly}}\:\mathrm{correct} \\ $$$$\mathrm{in}\:\mathrm{roman}\:\mathrm{alphabet}! \\ $$ | ||
| Commented by Rasheed.Sindhi last updated on 30/Aug/19 | ||
| Sir, ich fühle mich mit Ihnen freundlicher als jeder andere Forum-Freund von mir. | ||
| Commented by mr W last updated on 30/Aug/19 | ||
|  | ||
| $${thank}\:{you}\:{for}\:{saying}\:{that},\:{sir}! \\ $$ | ||