Question and Answers Forum

All Questions      Topic List

Geometry Questions

Previous in All Question      Next in All Question      

Previous in Geometry      Next in Geometry      

Question Number 67116 by TawaTawa last updated on 23/Aug/19

Commented by TawaTawa last updated on 23/Aug/19

God bless you sir

$$\mathrm{God}\:\mathrm{bless}\:\mathrm{you}\:\mathrm{sir} \\ $$

Answered by Kunal12588 last updated on 23/Aug/19

10×10−(1/2)×3×3−2×(1/2)×10×7  100−4.5−70  =30−4.5=25.5 square units

$$\mathrm{10}×\mathrm{10}−\frac{\mathrm{1}}{\mathrm{2}}×\mathrm{3}×\mathrm{3}−\mathrm{2}×\frac{\mathrm{1}}{\mathrm{2}}×\mathrm{10}×\mathrm{7} \\ $$$$\mathrm{100}−\mathrm{4}.\mathrm{5}−\mathrm{70} \\ $$$$=\mathrm{30}−\mathrm{4}.\mathrm{5}=\mathrm{25}.\mathrm{5}\:{square}\:{units} \\ $$

Commented by TawaTawa last updated on 23/Aug/19

God bless you sir

$$\mathrm{God}\:\mathrm{bless}\:\mathrm{you}\:\mathrm{sir} \\ $$

Commented by TawaTawa last updated on 23/Aug/19

I dont get the break down here sir.  Help me to understand.   Thanks for your time.

$$\mathrm{I}\:\mathrm{dont}\:\mathrm{get}\:\mathrm{the}\:\mathrm{break}\:\mathrm{down}\:\mathrm{here}\:\mathrm{sir}.\:\:\mathrm{Help}\:\mathrm{me}\:\mathrm{to}\:\mathrm{understand}.\: \\ $$$$\mathrm{Thanks}\:\mathrm{for}\:\mathrm{your}\:\mathrm{time}. \\ $$

Answered by Kunal12588 last updated on 23/Aug/19

area=(1/2) determinant ((0,0,1),((10),7,1),(7,(10),1))  =(1/2)∣(100−49)∣=25.5 squared units

$${area}=\frac{\mathrm{1}}{\mathrm{2}}\begin{vmatrix}{\mathrm{0}}&{\mathrm{0}}&{\mathrm{1}}\\{\mathrm{10}}&{\mathrm{7}}&{\mathrm{1}}\\{\mathrm{7}}&{\mathrm{10}}&{\mathrm{1}}\end{vmatrix} \\ $$$$=\frac{\mathrm{1}}{\mathrm{2}}\mid\left(\mathrm{100}−\mathrm{49}\right)\mid=\mathrm{25}.\mathrm{5}\:{squared}\:{units} \\ $$

Commented by TawaTawa last updated on 23/Aug/19

I appreciate sir

$$\mathrm{I}\:\mathrm{appreciate}\:\mathrm{sir} \\ $$

Answered by mr W last updated on 23/Aug/19

(1/2)×3(√2)×(10(√2)−(3/(√2)))  =(1/2)×3(20−3)  =((51)/2)  =25.5

$$\frac{\mathrm{1}}{\mathrm{2}}×\mathrm{3}\sqrt{\mathrm{2}}×\left(\mathrm{10}\sqrt{\mathrm{2}}−\frac{\mathrm{3}}{\sqrt{\mathrm{2}}}\right) \\ $$$$=\frac{\mathrm{1}}{\mathrm{2}}×\mathrm{3}\left(\mathrm{20}−\mathrm{3}\right) \\ $$$$=\frac{\mathrm{51}}{\mathrm{2}} \\ $$$$=\mathrm{25}.\mathrm{5} \\ $$

Commented by mr W last updated on 23/Aug/19

Commented by TawaTawa last updated on 23/Aug/19

God bless you sir.  Please let me see how you get  3(√2) (10(√2) − (3/(√2))) in the  diagram.   I am learning your approaches.  Thanks for your time sir.

$$\mathrm{God}\:\mathrm{bless}\:\mathrm{you}\:\mathrm{sir}.\:\:\mathrm{Please}\:\mathrm{let}\:\mathrm{me}\:\mathrm{see}\:\mathrm{how}\:\mathrm{you}\:\mathrm{get}\:\:\mathrm{3}\sqrt{\mathrm{2}}\:\left(\mathrm{10}\sqrt{\mathrm{2}}\:−\:\frac{\mathrm{3}}{\sqrt{\mathrm{2}}}\right)\:\mathrm{in}\:\mathrm{the} \\ $$$$\mathrm{diagram}.\:\:\:\mathrm{I}\:\mathrm{am}\:\mathrm{learning}\:\mathrm{your}\:\mathrm{approaches}.\:\:\mathrm{Thanks}\:\mathrm{for}\:\mathrm{your}\:\mathrm{time}\:\mathrm{sir}. \\ $$

Commented by mr W last updated on 23/Aug/19

AD=BD=3  ⇒AB=3(√2)  ⇒CD=(3/(√2))  OD=10(√2)  ⇒OC=OD−CD=10(√2)−(3/(√2))  A_(shade) =((AB×OC)/2)=((3(√2)(10(√2)−(3/(√2))))/2)  =((3(20−3))/2)=((3×17)/2)=((51)/2)

$${AD}={BD}=\mathrm{3} \\ $$$$\Rightarrow{AB}=\mathrm{3}\sqrt{\mathrm{2}} \\ $$$$\Rightarrow{CD}=\frac{\mathrm{3}}{\sqrt{\mathrm{2}}} \\ $$$${OD}=\mathrm{10}\sqrt{\mathrm{2}} \\ $$$$\Rightarrow{OC}={OD}−{CD}=\mathrm{10}\sqrt{\mathrm{2}}−\frac{\mathrm{3}}{\sqrt{\mathrm{2}}} \\ $$$${A}_{{shade}} =\frac{{AB}×{OC}}{\mathrm{2}}=\frac{\mathrm{3}\sqrt{\mathrm{2}}\left(\mathrm{10}\sqrt{\mathrm{2}}−\frac{\mathrm{3}}{\sqrt{\mathrm{2}}}\right)}{\mathrm{2}} \\ $$$$=\frac{\mathrm{3}\left(\mathrm{20}−\mathrm{3}\right)}{\mathrm{2}}=\frac{\mathrm{3}×\mathrm{17}}{\mathrm{2}}=\frac{\mathrm{51}}{\mathrm{2}} \\ $$

Commented by TawaTawa last updated on 23/Aug/19

Wow, great,  i understand sir.

$$\mathrm{Wow},\:\mathrm{great},\:\:\mathrm{i}\:\mathrm{understand}\:\mathrm{sir}. \\ $$

Commented by TawaTawa last updated on 23/Aug/19

Thanks for your time sir

$$\mathrm{Thanks}\:\mathrm{for}\:\mathrm{your}\:\mathrm{time}\:\mathrm{sir} \\ $$

Commented by TawaTawa last updated on 23/Aug/19

Sir, help me check. I have solved the one you said i should try

$$\mathrm{Sir},\:\mathrm{help}\:\mathrm{me}\:\mathrm{check}.\:\mathrm{I}\:\mathrm{have}\:\mathrm{solved}\:\mathrm{the}\:\mathrm{one}\:\mathrm{you}\:\mathrm{said}\:\mathrm{i}\:\mathrm{should}\:\mathrm{try} \\ $$

Answered by Kunal12588 last updated on 23/Aug/19

question asks for easy way but lets try a hard way  eq^n  of line passing through O and (7,10)  is y−0=((y−10)/(x−7))(x−0)  ⇒y=((10)/7)x  eq^n  of line passing through O and (10,7)  is y−0=((y−7)/(x−10))(x−0)  ⇒y=(7/(10))x  eq^n  of line passing through (7,10) and (10,7)  y−10=((y−7)/(x−10))(x−7)  ⇒xy−10x−10y+100=xy−7x−7y+49  ⇒x+y=17  ⇒y=17−x  area = ∫_0 ^7  ((10)/7)x dx + ∫_7 ^(10) (17−x)dx −∫_0 ^(10)  (7/(10))x dx   =((10)/7)×((49)/2)+17(10−7)−(((100)/2)−((49)/2))−(7/(10))×((100)/2)  =35+51−((51)/2)−35  =((51)/2)=25.5

$${question}\:{asks}\:{for}\:{easy}\:{way}\:{but}\:{lets}\:{try}\:{a}\:{hard}\:{way} \\ $$$${eq}^{{n}} \:{of}\:{line}\:{passing}\:{through}\:{O}\:{and}\:\left(\mathrm{7},\mathrm{10}\right) \\ $$$${is}\:{y}−\mathrm{0}=\frac{{y}−\mathrm{10}}{{x}−\mathrm{7}}\left({x}−\mathrm{0}\right) \\ $$$$\Rightarrow{y}=\frac{\mathrm{10}}{\mathrm{7}}{x} \\ $$$${eq}^{{n}} \:{of}\:{line}\:{passing}\:{through}\:{O}\:{and}\:\left(\mathrm{10},\mathrm{7}\right) \\ $$$${is}\:{y}−\mathrm{0}=\frac{{y}−\mathrm{7}}{{x}−\mathrm{10}}\left({x}−\mathrm{0}\right) \\ $$$$\Rightarrow{y}=\frac{\mathrm{7}}{\mathrm{10}}{x} \\ $$$${eq}^{{n}} \:{of}\:{line}\:{passing}\:{through}\:\left(\mathrm{7},\mathrm{10}\right)\:{and}\:\left(\mathrm{10},\mathrm{7}\right) \\ $$$${y}−\mathrm{10}=\frac{{y}−\mathrm{7}}{{x}−\mathrm{10}}\left({x}−\mathrm{7}\right) \\ $$$$\Rightarrow{xy}−\mathrm{10}{x}−\mathrm{10}{y}+\mathrm{100}={xy}−\mathrm{7}{x}−\mathrm{7}{y}+\mathrm{49} \\ $$$$\Rightarrow{x}+{y}=\mathrm{17} \\ $$$$\Rightarrow{y}=\mathrm{17}−{x} \\ $$$${area}\:=\:\int_{\mathrm{0}} ^{\mathrm{7}} \:\frac{\mathrm{10}}{\mathrm{7}}{x}\:{dx}\:+\:\int_{\mathrm{7}} ^{\mathrm{10}} \left(\mathrm{17}−{x}\right){dx}\:−\int_{\mathrm{0}} ^{\mathrm{10}} \:\frac{\mathrm{7}}{\mathrm{10}}{x}\:{dx}\: \\ $$$$=\frac{\mathrm{10}}{\mathrm{7}}×\frac{\mathrm{49}}{\mathrm{2}}+\mathrm{17}\left(\mathrm{10}−\mathrm{7}\right)−\left(\frac{\mathrm{100}}{\mathrm{2}}−\frac{\mathrm{49}}{\mathrm{2}}\right)−\frac{\mathrm{7}}{\mathrm{10}}×\frac{\mathrm{100}}{\mathrm{2}} \\ $$$$=\mathrm{35}+\mathrm{51}−\frac{\mathrm{51}}{\mathrm{2}}−\mathrm{35} \\ $$$$=\frac{\mathrm{51}}{\mathrm{2}}=\mathrm{25}.\mathrm{5} \\ $$

Commented by TawaTawa last updated on 23/Aug/19

Wow, great sir. God bless you sir.

$$\mathrm{Wow},\:\mathrm{great}\:\mathrm{sir}.\:\mathrm{God}\:\mathrm{bless}\:\mathrm{you}\:\mathrm{sir}. \\ $$

Commented by TawaTawa last updated on 23/Aug/19

But sir, how do i choose area using integration

$$\mathrm{But}\:\mathrm{sir},\:\mathrm{how}\:\mathrm{do}\:\mathrm{i}\:\mathrm{choose}\:\mathrm{area}\:\mathrm{using}\:\mathrm{integration} \\ $$

Terms of Service

Privacy Policy

Contact: info@tinkutara.com