Question and Answers Forum

All Questions      Topic List

Integration Questions

Previous in All Question      Next in All Question      

Previous in Integration      Next in Integration      

Question Number 65581 by aliesam last updated on 31/Jul/19

Commented by mathmax by abdo last updated on 31/Jul/19

let A =∫ e^(((1/x)−x))  dx   we have e^u  =Σ_(n=0) ^∞  (u^n /(n!))  with radius infinite⇒  e^(((1/x)−x))  =Σ_(n=0) ^∞ (1/(n!))((1/x)−x)^n  =Σ_(n=0) ^∞ (1/(n!))(Σ_(k=0) ^n  C_n ^k  x^k ((1/x))^(n−k) )  =Σ_(n=0) ^∞  (1/(n!)) Σ_(k=0) ^n  C_n ^k  x^k  .x^(k−n)  =Σ_(n=0) ^∞ (1/(n!))Σ_(k=0) ^n  C_n ^k  x^(2k−n)  ⇒  A =Σ_(n=0) ^∞  (1/(n!)) (Σ_(k=0) ^n  C_n ^k  ∫   x^(2k−n) dx)  =Σ_(n=0) ^∞  (1/(n!))(Σ_(k=0) ^n  (C_n ^k /(2k−n+1))x^(2k−n+1)  +λ)  =Σ_(n=0) ^∞ Σ_(k=0) ^n   (C_n ^k /(n!(2k−n+1)))x^(2k−n+1)  +λe

$${let}\:{A}\:=\int\:{e}^{\left(\frac{\mathrm{1}}{{x}}−{x}\right)} \:{dx}\:\:\:{we}\:{have}\:{e}^{{u}} \:=\sum_{{n}=\mathrm{0}} ^{\infty} \:\frac{{u}^{{n}} }{{n}!}\:\:{with}\:{radius}\:{infinite}\Rightarrow \\ $$$${e}^{\left(\frac{\mathrm{1}}{{x}}−{x}\right)} \:=\sum_{{n}=\mathrm{0}} ^{\infty} \frac{\mathrm{1}}{{n}!}\left(\frac{\mathrm{1}}{{x}}−{x}\right)^{{n}} \:=\sum_{{n}=\mathrm{0}} ^{\infty} \frac{\mathrm{1}}{{n}!}\left(\sum_{{k}=\mathrm{0}} ^{{n}} \:{C}_{{n}} ^{{k}} \:{x}^{{k}} \left(\frac{\mathrm{1}}{{x}}\right)^{{n}−{k}} \right) \\ $$$$=\sum_{{n}=\mathrm{0}} ^{\infty} \:\frac{\mathrm{1}}{{n}!}\:\sum_{{k}=\mathrm{0}} ^{{n}} \:{C}_{{n}} ^{{k}} \:{x}^{{k}} \:.{x}^{{k}−{n}} \:=\sum_{{n}=\mathrm{0}} ^{\infty} \frac{\mathrm{1}}{{n}!}\sum_{{k}=\mathrm{0}} ^{{n}} \:{C}_{{n}} ^{{k}} \:{x}^{\mathrm{2}{k}−{n}} \:\Rightarrow \\ $$$${A}\:=\sum_{{n}=\mathrm{0}} ^{\infty} \:\frac{\mathrm{1}}{{n}!}\:\left(\sum_{{k}=\mathrm{0}} ^{{n}} \:{C}_{{n}} ^{{k}} \:\int\:\:\:{x}^{\mathrm{2}{k}−{n}} {dx}\right) \\ $$$$=\sum_{{n}=\mathrm{0}} ^{\infty} \:\frac{\mathrm{1}}{{n}!}\left(\sum_{{k}=\mathrm{0}} ^{{n}} \:\frac{{C}_{{n}} ^{{k}} }{\mathrm{2}{k}−{n}+\mathrm{1}}{x}^{\mathrm{2}{k}−{n}+\mathrm{1}} \:+\lambda\right) \\ $$$$=\sum_{{n}=\mathrm{0}} ^{\infty} \sum_{{k}=\mathrm{0}} ^{{n}} \:\:\frac{{C}_{{n}} ^{{k}} }{{n}!\left(\mathrm{2}{k}−{n}+\mathrm{1}\right)}{x}^{\mathrm{2}{k}−{n}+\mathrm{1}} \:+\lambda{e} \\ $$$$ \\ $$

Terms of Service

Privacy Policy

Contact: info@tinkutara.com