Question and Answers Forum

All Questions      Topic List

Integration Questions

Previous in All Question      Next in All Question      

Previous in Integration      Next in Integration      

Question Number 63615 by aliesam last updated on 06/Jul/19

Commented by mathmax by abdo last updated on 06/Jul/19

changement  x=−t  give ∫_(−1) ^1  xln(1+10^x )dx =−∫_(−1) ^1  (−t)ln(1+10^(−t) )(−dt)  =−∫_(−1) ^1  t ln(1+(1/(10^t )))dt =−∫_(−1) ^1  t {ln(1+10^t )−ln(10^t )}dt  =−∫_(−1) ^1  tln(1+10^t ) +∫_(−1) ^1 tln(10^t )dt ⇒                2∫_(−1) ^1  xln(1+10^x )dx = ∫_(−1) ^1 t^2 ln(10)dt =2ln(10) ∫_0 ^1  t^2 dt =2ln(10)×(1/3)  =(2/3)ln(10) .

$${changement}\:\:{x}=−{t}\:\:{give}\:\int_{−\mathrm{1}} ^{\mathrm{1}} \:{xln}\left(\mathrm{1}+\mathrm{10}^{{x}} \right){dx}\:=−\int_{−\mathrm{1}} ^{\mathrm{1}} \:\left(−{t}\right){ln}\left(\mathrm{1}+\mathrm{10}^{−{t}} \right)\left(−{dt}\right) \\ $$$$=−\int_{−\mathrm{1}} ^{\mathrm{1}} \:{t}\:{ln}\left(\mathrm{1}+\frac{\mathrm{1}}{\mathrm{10}^{{t}} }\right){dt}\:=−\int_{−\mathrm{1}} ^{\mathrm{1}} \:{t}\:\left\{{ln}\left(\mathrm{1}+\mathrm{10}^{{t}} \right)−{ln}\left(\mathrm{10}^{{t}} \right)\right\}{dt} \\ $$$$=−\int_{−\mathrm{1}} ^{\mathrm{1}} \:{tln}\left(\mathrm{1}+\mathrm{10}^{{t}} \right)\:+\int_{−\mathrm{1}} ^{\mathrm{1}} {tln}\left(\mathrm{10}^{{t}} \right){dt}\:\Rightarrow\:\:\:\:\:\:\:\:\:\:\:\:\:\: \\ $$$$\mathrm{2}\int_{−\mathrm{1}} ^{\mathrm{1}} \:{xln}\left(\mathrm{1}+\mathrm{10}^{{x}} \right){dx}\:=\:\int_{−\mathrm{1}} ^{\mathrm{1}} {t}^{\mathrm{2}} {ln}\left(\mathrm{10}\right){dt}\:=\mathrm{2}{ln}\left(\mathrm{10}\right)\:\int_{\mathrm{0}} ^{\mathrm{1}} \:{t}^{\mathrm{2}} {dt}\:=\mathrm{2}{ln}\left(\mathrm{10}\right)×\frac{\mathrm{1}}{\mathrm{3}} \\ $$$$=\frac{\mathrm{2}}{\mathrm{3}}{ln}\left(\mathrm{10}\right)\:. \\ $$

Commented by aliesam last updated on 06/Jul/19

god bless you sir

$${god}\:{bless}\:{you}\:{sir} \\ $$

Commented by mathmax by abdo last updated on 06/Jul/19

you are welcome.

$${you}\:{are}\:{welcome}. \\ $$

Commented by MJS last updated on 06/Jul/19

great! but of course the final answer is (1/3)ln 10

$$\mathrm{great}!\:\mathrm{but}\:\mathrm{of}\:\mathrm{course}\:\mathrm{the}\:\mathrm{final}\:\mathrm{answer}\:\mathrm{is}\:\frac{\mathrm{1}}{\mathrm{3}}\mathrm{ln}\:\mathrm{10} \\ $$

Commented by Prithwish sen last updated on 06/Jul/19

excellent sir.

$$\mathrm{excellent}\:\mathrm{sir}. \\ $$

Terms of Service

Privacy Policy

Contact: info@tinkutara.com