Question and Answers Forum

All Questions      Topic List

Integration Questions

Previous in All Question      Next in All Question      

Previous in Integration      Next in Integration      

Question Number 63570 by mr W last updated on 05/Jul/19

Commented by mathmax by abdo last updated on 05/Jul/19

∫_0 ^1 (−1)^x dx =∫_0 ^1  e^(iπx) dx =[(1/(iπ)) e^(iπx) ]_0 ^1  =(1/(iπ)){ e^(iπ) −1} =((−2)/(iπ))  ⇒   ∫_0 ^1  (−1)^x dx = ((2i)/π)

$$\int_{\mathrm{0}} ^{\mathrm{1}} \left(−\mathrm{1}\right)^{{x}} {dx}\:=\int_{\mathrm{0}} ^{\mathrm{1}} \:{e}^{{i}\pi{x}} {dx}\:=\left[\frac{\mathrm{1}}{{i}\pi}\:{e}^{{i}\pi{x}} \right]_{\mathrm{0}} ^{\mathrm{1}} \:=\frac{\mathrm{1}}{{i}\pi}\left\{\:{e}^{{i}\pi} −\mathrm{1}\right\}\:=\frac{−\mathrm{2}}{{i}\pi}\:\:\Rightarrow \\ $$$$\:\int_{\mathrm{0}} ^{\mathrm{1}} \:\left(−\mathrm{1}\right)^{{x}} {dx}\:=\:\frac{\mathrm{2}{i}}{\pi} \\ $$

Commented by mr W last updated on 05/Jul/19

thank you sir!

$${thank}\:{you}\:{sir}! \\ $$

Commented by mathmax by abdo last updated on 05/Jul/19

you are welcome sir .

$${you}\:{are}\:{welcome}\:{sir}\:. \\ $$

Answered by MJS last updated on 05/Jul/19

∫a^x dx=(a^x /(ln a)) +C  ∫_0 ^1 (−1)^x dx=[(((−1)^x )/(ln −1))]_0 ^1 =−(2/(ln −1))=(2/π)i

$$\int{a}^{{x}} {dx}=\frac{{a}^{{x}} }{\mathrm{ln}\:{a}}\:+{C} \\ $$$$\underset{\mathrm{0}} {\overset{\mathrm{1}} {\int}}\left(−\mathrm{1}\right)^{{x}} {dx}=\left[\frac{\left(−\mathrm{1}\right)^{{x}} }{\mathrm{ln}\:−\mathrm{1}}\right]_{\mathrm{0}} ^{\mathrm{1}} =−\frac{\mathrm{2}}{\mathrm{ln}\:−\mathrm{1}}=\frac{\mathrm{2}}{\pi}\mathrm{i} \\ $$

Commented by mr W last updated on 05/Jul/19

thanks sir!

$${thanks}\:{sir}! \\ $$

Commented by MJS last updated on 05/Jul/19

(−1)^x =cos πx +i sin πx

$$\left(−\mathrm{1}\right)^{{x}} =\mathrm{cos}\:\pi{x}\:+\mathrm{i}\:\mathrm{sin}\:\pi{x} \\ $$

Terms of Service

Privacy Policy

Contact: info@tinkutara.com