Question and Answers Forum

All Questions      Topic List

Coordinate Geometry Questions

Previous in All Question      Next in All Question      

Previous in Coordinate Geometry      Next in Coordinate Geometry      

Question Number 63178 by ajfour last updated on 30/Jun/19

Commented by Prithwish sen last updated on 30/Jun/19

Sir, whether the answer is [(((a+b)/2)),(((a+b)/2))^2 ] or not ?

$$\mathrm{Sir},\:\mathrm{whether}\:\mathrm{the}\:\mathrm{answer}\:\mathrm{is}\:\left[\left(\frac{\mathrm{a}+\mathrm{b}}{\mathrm{2}}\right),\left(\frac{\mathrm{a}+\mathrm{b}}{\mathrm{2}}\right)^{\mathrm{2}} \right]\:\mathrm{or}\:\mathrm{not}\:? \\ $$

Answered by mr W last updated on 01/Jul/19

tangent at P:  m_T =2x_P   normal at P:  m_(NP) =−(1/m_T )=−(1/(2x_P ))  m_(AP) =(x_P ^2 /(x_P −a))  m_(BP) =(x_P ^2 /(x_P −b))  2θ_(NP) =(θ_(AP) +θ_(BP) )  ((2m_(NP) )/(1−m_(NP) ^2 ))=((m_(AP) +m_(BP) )/(1−m_(AP) m_(BP) ))  ⇒((−(2/(2x_P )))/(1−(−(1/(2x_P )))^2 ))=(((x_P ^2 /(x_P −a))+(x_P ^2 /(x_P −b)))/(1−(x_P ^2 /(x_P −a))×(x_P ^2 /(x_P −b))))  ⇒−((4x_P )/(4x_P ^2 −1))=(((2x_P −a−b)x_P ^2 )/((x_P −a)(x_P −b)−x_P ^4 ))  ⇒−(4/(4x_P ^2 −1))=(([2x_P −(a+b)]x_P )/(x_P ^2 +ab−(a+b)x_P −x_P ^4 ))  ⇒−4ab+4(a+b)x_P −4x_P ^2 +4x_P ^4 =8x_P ^4 −2x_P ^2 −4(a+b)x_P ^3 +(a+b)x_P   ⇒4x_P ^4 −4(a+b)x_P ^3 +2x_P ^2 −3(a+b)x_P +4ab=0  ⇒x_P ^4 −(a+b)x_P ^3 +(1/2)x_P ^2 −(3/4)(a+b)x_P +ab=0  x_P =....

$${tangent}\:{at}\:{P}: \\ $$$${m}_{{T}} =\mathrm{2}{x}_{{P}} \\ $$$${normal}\:{at}\:{P}: \\ $$$${m}_{{NP}} =−\frac{\mathrm{1}}{{m}_{{T}} }=−\frac{\mathrm{1}}{\mathrm{2}{x}_{{P}} } \\ $$$${m}_{{AP}} =\frac{{x}_{{P}} ^{\mathrm{2}} }{{x}_{{P}} −{a}} \\ $$$${m}_{{BP}} =\frac{{x}_{{P}} ^{\mathrm{2}} }{{x}_{{P}} −{b}} \\ $$$$\mathrm{2}\theta_{{NP}} =\left(\theta_{{AP}} +\theta_{{BP}} \right) \\ $$$$\frac{\mathrm{2}{m}_{{NP}} }{\mathrm{1}−{m}_{{NP}} ^{\mathrm{2}} }=\frac{{m}_{{AP}} +{m}_{{BP}} }{\mathrm{1}−{m}_{{AP}} {m}_{{BP}} } \\ $$$$\Rightarrow\frac{−\frac{\mathrm{2}}{\mathrm{2}{x}_{{P}} }}{\mathrm{1}−\left(−\frac{\mathrm{1}}{\mathrm{2}{x}_{{P}} }\right)^{\mathrm{2}} }=\frac{\frac{{x}_{{P}} ^{\mathrm{2}} }{{x}_{{P}} −{a}}+\frac{{x}_{{P}} ^{\mathrm{2}} }{{x}_{{P}} −{b}}}{\mathrm{1}−\frac{{x}_{{P}} ^{\mathrm{2}} }{{x}_{{P}} −{a}}×\frac{{x}_{{P}} ^{\mathrm{2}} }{{x}_{{P}} −{b}}} \\ $$$$\Rightarrow−\frac{\mathrm{4}{x}_{{P}} }{\mathrm{4}{x}_{{P}} ^{\mathrm{2}} −\mathrm{1}}=\frac{\left(\mathrm{2}{x}_{{P}} −{a}−{b}\right){x}_{{P}} ^{\mathrm{2}} }{\left({x}_{{P}} −{a}\right)\left({x}_{{P}} −{b}\right)−{x}_{{P}} ^{\mathrm{4}} } \\ $$$$\Rightarrow−\frac{\mathrm{4}}{\mathrm{4}{x}_{{P}} ^{\mathrm{2}} −\mathrm{1}}=\frac{\left[\mathrm{2}{x}_{{P}} −\left({a}+{b}\right)\right]{x}_{{P}} }{{x}_{{P}} ^{\mathrm{2}} +{ab}−\left({a}+{b}\right){x}_{{P}} −{x}_{{P}} ^{\mathrm{4}} } \\ $$$$\Rightarrow−\mathrm{4}{ab}+\mathrm{4}\left({a}+{b}\right){x}_{{P}} −\mathrm{4}{x}_{{P}} ^{\mathrm{2}} +\mathrm{4}{x}_{{P}} ^{\mathrm{4}} =\mathrm{8}{x}_{{P}} ^{\mathrm{4}} −\mathrm{2}{x}_{{P}} ^{\mathrm{2}} −\mathrm{4}\left({a}+{b}\right){x}_{{P}} ^{\mathrm{3}} +\left({a}+{b}\right){x}_{{P}} \\ $$$$\Rightarrow\mathrm{4}{x}_{{P}} ^{\mathrm{4}} −\mathrm{4}\left({a}+{b}\right){x}_{{P}} ^{\mathrm{3}} +\mathrm{2}{x}_{{P}} ^{\mathrm{2}} −\mathrm{3}\left({a}+{b}\right){x}_{{P}} +\mathrm{4}{ab}=\mathrm{0} \\ $$$$\Rightarrow{x}_{{P}} ^{\mathrm{4}} −\left({a}+{b}\right){x}_{{P}} ^{\mathrm{3}} +\frac{\mathrm{1}}{\mathrm{2}}{x}_{{P}} ^{\mathrm{2}} −\frac{\mathrm{3}}{\mathrm{4}}\left({a}+{b}\right){x}_{{P}} +{ab}=\mathrm{0} \\ $$$${x}_{{P}} =.... \\ $$

Commented by ajfour last updated on 01/Jul/19

okay sir. Thanks.

$${okay}\:{sir}.\:{Thanks}. \\ $$

Commented by MJS last updated on 01/Jul/19

please check, I get a different equation and  for a=3 b=5 our equations do not have any  common solution

$$\mathrm{please}\:\mathrm{check},\:\mathrm{I}\:\mathrm{get}\:\mathrm{a}\:\mathrm{different}\:\mathrm{equation}\:\mathrm{and} \\ $$$$\mathrm{for}\:{a}=\mathrm{3}\:{b}=\mathrm{5}\:\mathrm{our}\:\mathrm{equations}\:\mathrm{do}\:\mathrm{not}\:\mathrm{have}\:\mathrm{any} \\ $$$$\mathrm{common}\:\mathrm{solution} \\ $$

Commented by mr W last updated on 01/Jul/19

thank you sir! a typo led to wrong  equation in my working. now it′s fixed.

$${thank}\:{you}\:{sir}!\:{a}\:{typo}\:{led}\:{to}\:{wrong} \\ $$$${equation}\:{in}\:{my}\:{working}.\:{now}\:{it}'{s}\:{fixed}. \\ $$

Commented by MJS last updated on 01/Jul/19

you′re welcome  I thought there must be a typo because your  path seemed right

$$\mathrm{you}'\mathrm{re}\:\mathrm{welcome} \\ $$$$\mathrm{I}\:\mathrm{thought}\:\mathrm{there}\:\mathrm{must}\:\mathrm{be}\:\mathrm{a}\:\mathrm{typo}\:\mathrm{because}\:\mathrm{your} \\ $$$$\mathrm{path}\:\mathrm{seemed}\:\mathrm{right} \\ $$

Answered by MJS last updated on 01/Jul/19

P= ((x),(x^2 ) )  ∣AP∣+∣BP∣=(√(x^4 +x^2 −2ax+a^2 ))+(√(x^4 +x^2 −2bx+b^2 ))  (d/dx)[(√(x^4 +x^2 −2ax+a^2 ))+(√(x^4 +x^2 −2bx+b^2 ))]=0  ((2x^3 +x−a)/(√(x^4 +x^2 −2ax+a^2 )))+((2x^3 +x−b)/(√(x^4 +x^2 −2bx+b^2 )))=0  after squaring and transforming we get  x^4 −(a+b)x^3 +(1/2)x^2 −((3(a+b))/4)x+ab=0

$${P}=\begin{pmatrix}{{x}}\\{{x}^{\mathrm{2}} }\end{pmatrix} \\ $$$$\mid{AP}\mid+\mid{BP}\mid=\sqrt{{x}^{\mathrm{4}} +{x}^{\mathrm{2}} −\mathrm{2}{ax}+{a}^{\mathrm{2}} }+\sqrt{{x}^{\mathrm{4}} +{x}^{\mathrm{2}} −\mathrm{2}{bx}+{b}^{\mathrm{2}} } \\ $$$$\frac{{d}}{{dx}}\left[\sqrt{{x}^{\mathrm{4}} +{x}^{\mathrm{2}} −\mathrm{2}{ax}+{a}^{\mathrm{2}} }+\sqrt{{x}^{\mathrm{4}} +{x}^{\mathrm{2}} −\mathrm{2}{bx}+{b}^{\mathrm{2}} }\right]=\mathrm{0} \\ $$$$\frac{\mathrm{2}{x}^{\mathrm{3}} +{x}−{a}}{\sqrt{{x}^{\mathrm{4}} +{x}^{\mathrm{2}} −\mathrm{2}{ax}+{a}^{\mathrm{2}} }}+\frac{\mathrm{2}{x}^{\mathrm{3}} +{x}−{b}}{\sqrt{{x}^{\mathrm{4}} +{x}^{\mathrm{2}} −\mathrm{2}{bx}+{b}^{\mathrm{2}} }}=\mathrm{0} \\ $$$$\mathrm{after}\:\mathrm{squaring}\:\mathrm{and}\:\mathrm{transforming}\:\mathrm{we}\:\mathrm{get} \\ $$$${x}^{\mathrm{4}} −\left({a}+{b}\right){x}^{\mathrm{3}} +\frac{\mathrm{1}}{\mathrm{2}}{x}^{\mathrm{2}} −\frac{\mathrm{3}\left({a}+{b}\right)}{\mathrm{4}}{x}+{ab}=\mathrm{0} \\ $$

Terms of Service

Privacy Policy

Contact: info@tinkutara.com