Question and Answers Forum

All Questions      Topic List

Integration Questions

Previous in All Question      Next in All Question      

Previous in Integration      Next in Integration      

Question Number 62826 by Cheyboy last updated on 25/Jun/19

Commented by mathmax by abdo last updated on 25/Jun/19

b) I =∫_0 ^π   ((sinθ)/(√(π−θ)))  changement(√(π−θ)) =x give I =∫_(√π) ^0  ((sin(π−x^2 ))/x) (−2x)dx  = 2 ∫_0 ^(√π)   sin(x^2 )dx    the function x→sin(x^2 ) is continous on[0,(√π)] so the   integral  converges.  4b)  i think the Q .here is find lim_(n→∞)  (1/n){ f((1/n))+f((2/n))+....f((n/n))}  =lim_(n→+∞)  ((1−o)/n) Σ_(k=0) ^n f(0 +((k(1−o))/n)) =∫_0 ^1 f(x)dx .

$$\left.{b}\right)\:{I}\:=\int_{\mathrm{0}} ^{\pi} \:\:\frac{{sin}\theta}{\sqrt{\pi−\theta}}\:\:{changement}\sqrt{\pi−\theta}\:={x}\:{give}\:{I}\:=\int_{\sqrt{\pi}} ^{\mathrm{0}} \:\frac{{sin}\left(\pi−{x}^{\mathrm{2}} \right)}{{x}}\:\left(−\mathrm{2}{x}\right){dx} \\ $$$$=\:\mathrm{2}\:\int_{\mathrm{0}} ^{\sqrt{\pi}} \:\:{sin}\left({x}^{\mathrm{2}} \right){dx}\:\:\:\:{the}\:{function}\:{x}\rightarrow{sin}\left({x}^{\mathrm{2}} \right)\:{is}\:{continous}\:{on}\left[\mathrm{0},\sqrt{\pi}\right]\:{so}\:{the}\: \\ $$$${integral}\:\:{converges}. \\ $$$$\left.\mathrm{4}{b}\right)\:\:{i}\:{think}\:{the}\:{Q}\:.{here}\:{is}\:{find}\:{lim}_{{n}\rightarrow\infty} \:\frac{\mathrm{1}}{{n}}\left\{\:{f}\left(\frac{\mathrm{1}}{{n}}\right)+{f}\left(\frac{\mathrm{2}}{{n}}\right)+....{f}\left(\frac{{n}}{{n}}\right)\right\} \\ $$$$={lim}_{{n}\rightarrow+\infty} \:\frac{\mathrm{1}−{o}}{{n}}\:\sum_{{k}=\mathrm{0}} ^{{n}} {f}\left(\mathrm{0}\:+\frac{{k}\left(\mathrm{1}−{o}\right)}{{n}}\right)\:=\int_{\mathrm{0}} ^{\mathrm{1}} {f}\left({x}\right){dx}\:. \\ $$

Commented by mathmax by abdo last updated on 25/Jun/19

5) let A_p =∫_2 ^∞   (dx/(x(lnx)^p ))   changement  ln(x) =t give x =e^t   A_p = ∫_(ln(2)) ^(+∞)      ((e^t  dt)/(e^t t^p ))  =∫_(ln(2)) ^(+∞)    (dt/t^p )    and A_p  converges ⇔ p>1 .

$$\left.\mathrm{5}\right)\:{let}\:{A}_{{p}} =\int_{\mathrm{2}} ^{\infty} \:\:\frac{{dx}}{{x}\left({lnx}\right)^{{p}} }\:\:\:{changement}\:\:{ln}\left({x}\right)\:={t}\:{give}\:{x}\:={e}^{{t}} \\ $$$${A}_{{p}} =\:\int_{{ln}\left(\mathrm{2}\right)} ^{+\infty} \:\:\:\:\:\frac{{e}^{{t}} \:{dt}}{{e}^{{t}} {t}^{{p}} }\:\:=\int_{{ln}\left(\mathrm{2}\right)} ^{+\infty} \:\:\:\frac{{dt}}{{t}^{{p}} }\:\:\:\:{and}\:{A}_{{p}} \:{converges}\:\Leftrightarrow\:{p}>\mathrm{1}\:. \\ $$

Commented by Cheyboy last updated on 26/Jun/19

Godbless you Sir

$${Godbless}\:{you}\:{Sir} \\ $$

Commented by mathmax by abdo last updated on 26/Jun/19

you are welcome sir.

$${you}\:{are}\:{welcome}\:{sir}. \\ $$

Terms of Service

Privacy Policy

Contact: info@tinkutara.com