Question and Answers Forum

All Questions      Topic List

Integration Questions

Previous in All Question      Next in All Question      

Previous in Integration      Next in Integration      

Question Number 62790 by Tawa1 last updated on 25/Jun/19

Commented by Tawa1 last updated on 25/Jun/19

Find the minimum value of the integral

$$\mathrm{Find}\:\mathrm{the}\:\mathrm{minimum}\:\mathrm{value}\:\mathrm{of}\:\mathrm{the}\:\mathrm{integral} \\ $$

Answered by MJS last updated on 25/Jun/19

∫_(−1) ^1 (x^2 −bx−a)^2 dx=∫_(−1) ^1 (x^4 −2bx^3 −(2a−b^2 )x^2 +2abx+a^2 )dx=  =[(1/5)x^5 −(b/2)x^4 −((2a−b^2 )/3)x^3 +abx^2 +a^2 x]_(−1) ^1 =  =2a^2 −(4/3)a+(2/3)b^2 +(2/5)  min (2a^2 −(4/3)a+(2/3)b^2 +(2/5)) =  =(2/5)+min (2a^2 −(4/3)a) +min ((2/3)b^2 ) =  =(2/5)+min (2a^2 −(4/3)a) +0  (d/da)[2a^2 −(4/3)a]=4a−(4/3)=0 ⇒ a=(1/3)  ⇒ min (∫_(−1) ^1 (x^2 −bx−a)^2 dx)=(8/(45))

$$\underset{−\mathrm{1}} {\overset{\mathrm{1}} {\int}}\left({x}^{\mathrm{2}} −{bx}−{a}\right)^{\mathrm{2}} {dx}=\underset{−\mathrm{1}} {\overset{\mathrm{1}} {\int}}\left({x}^{\mathrm{4}} −\mathrm{2}{bx}^{\mathrm{3}} −\left(\mathrm{2}{a}−{b}^{\mathrm{2}} \right){x}^{\mathrm{2}} +\mathrm{2}{abx}+{a}^{\mathrm{2}} \right){dx}= \\ $$$$=\left[\frac{\mathrm{1}}{\mathrm{5}}{x}^{\mathrm{5}} −\frac{{b}}{\mathrm{2}}{x}^{\mathrm{4}} −\frac{\mathrm{2}{a}−{b}^{\mathrm{2}} }{\mathrm{3}}{x}^{\mathrm{3}} +{abx}^{\mathrm{2}} +{a}^{\mathrm{2}} {x}\right]_{−\mathrm{1}} ^{\mathrm{1}} = \\ $$$$=\mathrm{2}{a}^{\mathrm{2}} −\frac{\mathrm{4}}{\mathrm{3}}{a}+\frac{\mathrm{2}}{\mathrm{3}}{b}^{\mathrm{2}} +\frac{\mathrm{2}}{\mathrm{5}} \\ $$$$\mathrm{min}\:\left(\mathrm{2}{a}^{\mathrm{2}} −\frac{\mathrm{4}}{\mathrm{3}}{a}+\frac{\mathrm{2}}{\mathrm{3}}{b}^{\mathrm{2}} +\frac{\mathrm{2}}{\mathrm{5}}\right)\:= \\ $$$$=\frac{\mathrm{2}}{\mathrm{5}}+\mathrm{min}\:\left(\mathrm{2}{a}^{\mathrm{2}} −\frac{\mathrm{4}}{\mathrm{3}}{a}\right)\:+\mathrm{min}\:\left(\frac{\mathrm{2}}{\mathrm{3}}{b}^{\mathrm{2}} \right)\:= \\ $$$$=\frac{\mathrm{2}}{\mathrm{5}}+\mathrm{min}\:\left(\mathrm{2}{a}^{\mathrm{2}} −\frac{\mathrm{4}}{\mathrm{3}}{a}\right)\:+\mathrm{0} \\ $$$$\frac{{d}}{{da}}\left[\mathrm{2}{a}^{\mathrm{2}} −\frac{\mathrm{4}}{\mathrm{3}}{a}\right]=\mathrm{4}{a}−\frac{\mathrm{4}}{\mathrm{3}}=\mathrm{0}\:\Rightarrow\:{a}=\frac{\mathrm{1}}{\mathrm{3}} \\ $$$$\Rightarrow\:\mathrm{min}\:\left(\underset{−\mathrm{1}} {\overset{\mathrm{1}} {\int}}\left({x}^{\mathrm{2}} −{bx}−{a}\right)^{\mathrm{2}} {dx}\right)=\frac{\mathrm{8}}{\mathrm{45}} \\ $$

Commented by Prithwish sen last updated on 25/Jun/19

Sir great !

$$\mathrm{Sir}\:\mathrm{great}\:! \\ $$

Commented by Tawa1 last updated on 25/Jun/19

God bless you sir

$$\mathrm{God}\:\mathrm{bless}\:\mathrm{you}\:\mathrm{sir} \\ $$

Terms of Service

Privacy Policy

Contact: info@tinkutara.com