Question and Answers Forum

All Questions      Topic List

Arithmetic Questions

Previous in All Question      Next in All Question      

Previous in Arithmetic      Next in Arithmetic      

Question Number 62570 by aliesam last updated on 23/Jun/19

Commented by mathmax by abdo last updated on 23/Jun/19

we have S(x) =Σ_(n=1) ^∞  ((sin(nx))/2^(n−1) ) =2 Σ_(n=1) ^∞  ((sin(nx))/2^n ) =2 Im(Σ_(n=1) ^∞  (e^(inx) /2^n ))      Σ_(n=1) ^∞  (e^(inx) /2^n ) =Σ_(n=1) ^∞  ((e^(ix) /2))^n  =Σ_(n=0) ^∞  ((e^(ix) /2))^n  −1 =(1/(1−(e^(ix) /2))) −1    (∣(e^(ix) /2)∣=(1/2)<1)  =(2/(2−e^(ix) )) −1 =(2/(2−cosx −isinx)) −1 =((2(2−cosx +isinx))/((2−cosx)^2  +sin^2 x)) −1  =((2(2−cosx)−{ (2−cosx)^2 +sin^2 x} +2i sinx)/((2−cosx)^2  +sin^2 x)) ⇒  S(x) =((4sinx)/((2−cosx)^2  +sin^2 x)) =((4sinx)/(4−4cosx +1)) =((4sinx)/(5−4cosx))  x =(π/4) ⇒S((π/4)) =((4sin((π/4)))/(5−4cos((π/4)))) =((4/(√2))/(5−(4/(√2)))) =(4/(5(√2)−4)) .

$${we}\:{have}\:{S}\left({x}\right)\:=\sum_{{n}=\mathrm{1}} ^{\infty} \:\frac{{sin}\left({nx}\right)}{\mathrm{2}^{{n}−\mathrm{1}} }\:=\mathrm{2}\:\sum_{{n}=\mathrm{1}} ^{\infty} \:\frac{{sin}\left({nx}\right)}{\mathrm{2}^{{n}} }\:=\mathrm{2}\:{Im}\left(\sum_{{n}=\mathrm{1}} ^{\infty} \:\frac{{e}^{{inx}} }{\mathrm{2}^{{n}} }\right)\:\:\:\: \\ $$$$\sum_{{n}=\mathrm{1}} ^{\infty} \:\frac{{e}^{{inx}} }{\mathrm{2}^{{n}} }\:=\sum_{{n}=\mathrm{1}} ^{\infty} \:\left(\frac{{e}^{{ix}} }{\mathrm{2}}\right)^{{n}} \:=\sum_{{n}=\mathrm{0}} ^{\infty} \:\left(\frac{{e}^{{ix}} }{\mathrm{2}}\right)^{{n}} \:−\mathrm{1}\:=\frac{\mathrm{1}}{\mathrm{1}−\frac{{e}^{{ix}} }{\mathrm{2}}}\:−\mathrm{1}\:\:\:\:\left(\mid\frac{{e}^{{ix}} }{\mathrm{2}}\mid=\frac{\mathrm{1}}{\mathrm{2}}<\mathrm{1}\right) \\ $$$$=\frac{\mathrm{2}}{\mathrm{2}−{e}^{{ix}} }\:−\mathrm{1}\:=\frac{\mathrm{2}}{\mathrm{2}−{cosx}\:−{isinx}}\:−\mathrm{1}\:=\frac{\mathrm{2}\left(\mathrm{2}−{cosx}\:+{isinx}\right)}{\left(\mathrm{2}−{cosx}\right)^{\mathrm{2}} \:+{sin}^{\mathrm{2}} {x}}\:−\mathrm{1} \\ $$$$=\frac{\mathrm{2}\left(\mathrm{2}−{cosx}\right)−\left\{\:\left(\mathrm{2}−{cosx}\right)^{\mathrm{2}} +{sin}^{\mathrm{2}} {x}\right\}\:+\mathrm{2}{i}\:{sinx}}{\left(\mathrm{2}−{cosx}\right)^{\mathrm{2}} \:+{sin}^{\mathrm{2}} {x}}\:\Rightarrow \\ $$$${S}\left({x}\right)\:=\frac{\mathrm{4}{sinx}}{\left(\mathrm{2}−{cosx}\right)^{\mathrm{2}} \:+{sin}^{\mathrm{2}} {x}}\:=\frac{\mathrm{4}{sinx}}{\mathrm{4}−\mathrm{4}{cosx}\:+\mathrm{1}}\:=\frac{\mathrm{4}{sinx}}{\mathrm{5}−\mathrm{4}{cosx}} \\ $$$${x}\:=\frac{\pi}{\mathrm{4}}\:\Rightarrow{S}\left(\frac{\pi}{\mathrm{4}}\right)\:=\frac{\mathrm{4}{sin}\left(\frac{\pi}{\mathrm{4}}\right)}{\mathrm{5}−\mathrm{4}{cos}\left(\frac{\pi}{\mathrm{4}}\right)}\:=\frac{\frac{\mathrm{4}}{\sqrt{\mathrm{2}}}}{\mathrm{5}−\frac{\mathrm{4}}{\sqrt{\mathrm{2}}}}\:=\frac{\mathrm{4}}{\mathrm{5}\sqrt{\mathrm{2}}−\mathrm{4}}\:. \\ $$

Terms of Service

Privacy Policy

Contact: info@tinkutara.com