Question and Answers Forum

All Questions      Topic List

Algebra Questions

Previous in All Question      Next in All Question      

Previous in Algebra      Next in Algebra      

Question Number 62176 by Tawa1 last updated on 16/Jun/19

Answered by MJS last updated on 17/Jun/19

to make it clear let: a, b, c, d ∈R  a+b+c+d=1  F=ab+bc+cd    d=1−a−b−c  F=ab+c−ac−c^2   (dF/da)=b−c=0 ⇒ c=b  (dF/db)=a=0 ⇒ a=0  (dF/dc)=1−a−2c=0 ⇒ c=((1−a)/2) ⇒ c=(1/2)  ⇒ b=(1/2) ⇒ d=0  F=ab+bc+cd=(1/4)    we get the same on a different path  c=1−a−b−d  F=(b+d)−(b+d)^2 −ad  (dF/da)=−d=0 ⇒ d=0  (dF/db)=1−2(b+d)=0 ⇒ b=(1/2)−d ⇒ b=(1/2)  (dF/dd)=1−2(b+d)−a=0 ⇒ a=0  ⇒ c=(1/2)    this means: b=c must be as big and a=d as  small as possible  in our case  a, b, c, d ∈N^★   a+b+c+d=63  a=d=1  b=31∧c=30 ∨ b=30∧c=31  F=1×31+31×30+30×1=991    if a, b, c, d∈R  a=d=0  b=c=31.5  F=31.5^2 =992.25

$$\mathrm{to}\:\mathrm{make}\:\mathrm{it}\:\mathrm{clear}\:\mathrm{let}:\:{a},\:{b},\:{c},\:{d}\:\in\mathbb{R} \\ $$$${a}+{b}+{c}+{d}=\mathrm{1} \\ $$$${F}={ab}+{bc}+{cd} \\ $$$$ \\ $$$${d}=\mathrm{1}−{a}−{b}−{c} \\ $$$${F}={ab}+{c}−{ac}−{c}^{\mathrm{2}} \\ $$$$\frac{{dF}}{{da}}={b}−{c}=\mathrm{0}\:\Rightarrow\:{c}={b} \\ $$$$\frac{{dF}}{{db}}={a}=\mathrm{0}\:\Rightarrow\:{a}=\mathrm{0} \\ $$$$\frac{{dF}}{{dc}}=\mathrm{1}−{a}−\mathrm{2}{c}=\mathrm{0}\:\Rightarrow\:{c}=\frac{\mathrm{1}−{a}}{\mathrm{2}}\:\Rightarrow\:{c}=\frac{\mathrm{1}}{\mathrm{2}} \\ $$$$\Rightarrow\:{b}=\frac{\mathrm{1}}{\mathrm{2}}\:\Rightarrow\:{d}=\mathrm{0} \\ $$$${F}={ab}+{bc}+{cd}=\frac{\mathrm{1}}{\mathrm{4}} \\ $$$$ \\ $$$$\mathrm{we}\:\mathrm{get}\:\mathrm{the}\:\mathrm{same}\:\mathrm{on}\:\mathrm{a}\:\mathrm{different}\:\mathrm{path} \\ $$$${c}=\mathrm{1}−{a}−{b}−{d} \\ $$$${F}=\left({b}+{d}\right)−\left({b}+{d}\right)^{\mathrm{2}} −{ad} \\ $$$$\frac{{dF}}{{da}}=−{d}=\mathrm{0}\:\Rightarrow\:{d}=\mathrm{0} \\ $$$$\frac{{dF}}{{db}}=\mathrm{1}−\mathrm{2}\left({b}+{d}\right)=\mathrm{0}\:\Rightarrow\:{b}=\frac{\mathrm{1}}{\mathrm{2}}−{d}\:\Rightarrow\:{b}=\frac{\mathrm{1}}{\mathrm{2}} \\ $$$$\frac{{dF}}{{dd}}=\mathrm{1}−\mathrm{2}\left({b}+{d}\right)−{a}=\mathrm{0}\:\Rightarrow\:{a}=\mathrm{0} \\ $$$$\Rightarrow\:{c}=\frac{\mathrm{1}}{\mathrm{2}} \\ $$$$ \\ $$$$\mathrm{this}\:\mathrm{means}:\:{b}={c}\:\mathrm{must}\:\mathrm{be}\:\mathrm{as}\:\mathrm{big}\:\mathrm{and}\:{a}={d}\:\mathrm{as} \\ $$$$\mathrm{small}\:\mathrm{as}\:\mathrm{possible} \\ $$$$\mathrm{in}\:\mathrm{our}\:\mathrm{case} \\ $$$${a},\:{b},\:{c},\:{d}\:\in\mathbb{N}^{\bigstar} \\ $$$${a}+{b}+{c}+{d}=\mathrm{63} \\ $$$${a}={d}=\mathrm{1} \\ $$$${b}=\mathrm{31}\wedge{c}=\mathrm{30}\:\vee\:{b}=\mathrm{30}\wedge{c}=\mathrm{31} \\ $$$${F}=\mathrm{1}×\mathrm{31}+\mathrm{31}×\mathrm{30}+\mathrm{30}×\mathrm{1}=\mathrm{991} \\ $$$$ \\ $$$$\mathrm{if}\:{a},\:{b},\:{c},\:{d}\in\mathbb{R} \\ $$$${a}={d}=\mathrm{0} \\ $$$${b}={c}=\mathrm{31}.\mathrm{5} \\ $$$${F}=\mathrm{31}.\mathrm{5}^{\mathrm{2}} =\mathrm{992}.\mathrm{25} \\ $$

Commented by Tawa1 last updated on 21/Jun/19

God bless you sir

$$\mathrm{God}\:\mathrm{bless}\:\mathrm{you}\:\mathrm{sir} \\ $$

Answered by mr W last updated on 21/Jun/19

a+b+c+d=63  S=ab+bc+cd  =ab+bc+cd+da−da  =(a+c)(b+d)−da  =(a+c)[63−(a+c)]−da  to get max. S, d must be as small as  possible which is 1.  ⇒a+c=62−b  S=(62−b)(1+b)−a  to get max. S, a must be as small as  possible which is 1.  ⇒b+c=61⇒1≤b≤60  S=(62−b)(1+b)−1=61+(((61)/2))^2 −(b−((61)/2))^2   to get max. S, b should be as close  to ((61)/2) as possible, which is 30 or 31.  with b=30: S=32×31−1=991  with b=31: S=31×32−1=991  ⇒max. S=991

$${a}+{b}+{c}+{d}=\mathrm{63} \\ $$$${S}={ab}+{bc}+{cd} \\ $$$$={ab}+{bc}+{cd}+{da}−{da} \\ $$$$=\left({a}+{c}\right)\left({b}+{d}\right)−{da} \\ $$$$=\left({a}+{c}\right)\left[\mathrm{63}−\left({a}+{c}\right)\right]−{da} \\ $$$${to}\:{get}\:{max}.\:{S},\:{d}\:{must}\:{be}\:{as}\:{small}\:{as} \\ $$$${possible}\:{which}\:{is}\:\mathrm{1}. \\ $$$$\Rightarrow{a}+{c}=\mathrm{62}−{b} \\ $$$${S}=\left(\mathrm{62}−{b}\right)\left(\mathrm{1}+{b}\right)−{a} \\ $$$${to}\:{get}\:{max}.\:{S},\:{a}\:{must}\:{be}\:{as}\:{small}\:{as} \\ $$$${possible}\:{which}\:{is}\:\mathrm{1}. \\ $$$$\Rightarrow{b}+{c}=\mathrm{61}\Rightarrow\mathrm{1}\leqslant{b}\leqslant\mathrm{60} \\ $$$${S}=\left(\mathrm{62}−{b}\right)\left(\mathrm{1}+{b}\right)−\mathrm{1}=\mathrm{61}+\left(\frac{\mathrm{61}}{\mathrm{2}}\right)^{\mathrm{2}} −\left({b}−\frac{\mathrm{61}}{\mathrm{2}}\right)^{\mathrm{2}} \\ $$$${to}\:{get}\:{max}.\:{S},\:{b}\:{should}\:{be}\:{as}\:{close} \\ $$$${to}\:\frac{\mathrm{61}}{\mathrm{2}}\:{as}\:{possible},\:{which}\:{is}\:\mathrm{30}\:{or}\:\mathrm{31}. \\ $$$${with}\:{b}=\mathrm{30}:\:{S}=\mathrm{32}×\mathrm{31}−\mathrm{1}=\mathrm{991} \\ $$$${with}\:{b}=\mathrm{31}:\:{S}=\mathrm{31}×\mathrm{32}−\mathrm{1}=\mathrm{991} \\ $$$$\Rightarrow{max}.\:{S}=\mathrm{991} \\ $$

Commented by Tawa1 last updated on 21/Jun/19

God bless you sir

$$\mathrm{God}\:\mathrm{bless}\:\mathrm{you}\:\mathrm{sir} \\ $$

Terms of Service

Privacy Policy

Contact: info@tinkutara.com