Question and Answers Forum

All Questions      Topic List

Others Questions

Previous in All Question      Next in All Question      

Previous in Others      Next in Others      

Question Number 61318 by Tawa1 last updated on 31/May/19

Answered by tanmay last updated on 01/Jun/19

V_(train w.r.t ground) ^→ =(((64000)/(3600)))m/s i^→ =(((160)/9))m/s i^→   V_(rain w.r.t ground) ^→ =5m/s (−k^→ )  i think apperent velocity of rain t0 be found  (V^→ )_(w.r.t train) ^(rain) =(V^→ )_(ground) ^(rain) −(V^→ )_(ground) ^(train) =−5k^→ −((160)/9)i^→   resultant =(√((−5)^2 +(((−160)/9))^2 ))  ≈18.47m/s(approx)  direction tanα=((−5)/((−160)/9))=((45)/(160))=0.28125=tan15.7^o  (approx) with the direction  of train...  pls check...

$$\overset{\rightarrow} {{V}}_{{train}\:{w}.{r}.{t}\:{ground}} =\left(\frac{\mathrm{64000}}{\mathrm{3600}}\right){m}/{s}\:\overset{\rightarrow} {{i}}=\left(\frac{\mathrm{160}}{\mathrm{9}}\right){m}/{s}\:\overset{\rightarrow} {{i}} \\ $$$$\overset{\rightarrow} {{V}}_{{rain}\:{w}.{r}.{t}\:{ground}} =\mathrm{5}{m}/{s}\:\left(−\overset{\rightarrow} {{k}}\right) \\ $$$${i}\:{think}\:{apperent}\:{velocity}\:{of}\:{rain}\:{t}\mathrm{0}\:{be}\:{found} \\ $$$$\left(\overset{\rightarrow} {{V}}\right)_{{w}.{r}.{t}\:{train}} ^{{rain}} =\left(\overset{\rightarrow} {{V}}\right)_{{ground}} ^{{rain}} −\left(\overset{\rightarrow} {{V}}\right)_{{ground}} ^{{train}} =−\mathrm{5}\overset{\rightarrow} {{k}}−\frac{\mathrm{160}}{\mathrm{9}}\overset{\rightarrow} {{i}} \\ $$$${resultant}\:=\sqrt{\left(−\mathrm{5}\right)^{\mathrm{2}} +\left(\frac{−\mathrm{160}}{\mathrm{9}}\right)^{\mathrm{2}} }\:\:\approx\mathrm{18}.\mathrm{47}{m}/{s}\left({approx}\right) \\ $$$${direction}\:{tan}\alpha=\frac{−\mathrm{5}}{\frac{−\mathrm{160}}{\mathrm{9}}}=\frac{\mathrm{45}}{\mathrm{160}}=\mathrm{0}.\mathrm{28125}={tan}\mathrm{15}.\mathrm{7}^{{o}} \:\left({approx}\right)\:{with}\:{the}\:{direction} \\ $$$${of}\:{train}... \\ $$$$\boldsymbol{{pls}}\:\boldsymbol{{check}}... \\ $$

Commented by Tawa1 last updated on 01/Jun/19

God bless you sir

$$\mathrm{God}\:\mathrm{bless}\:\mathrm{you}\:\mathrm{sir} \\ $$

Terms of Service

Privacy Policy

Contact: info@tinkutara.com