Question and Answers Forum

All Questions      Topic List

None Questions

Previous in All Question      Next in All Question      

Previous in None      Next in None      

Question Number 59777 by Kunal12588 last updated on 14/May/19

Commented by Kunal12588 last updated on 14/May/19

I made aformula you can use it like this  (√(2+(√3)))  1. find k  k=a−(√(a^2 −b))    [(√(2+(√3)))]  ⇒k=2−(√(4−3))=1  2. (√(2+(√3)))=(√(1/2))(1+((√3)/1))=((1+(√3))/(√2))  Can Anyone please try my formula

$${I}\:{made}\:{aformula}\:{you}\:{can}\:{use}\:{it}\:{like}\:{this} \\ $$$$\sqrt{\mathrm{2}+\sqrt{\mathrm{3}}} \\ $$$$\mathrm{1}.\:{find}\:{k} \\ $$$${k}={a}−\sqrt{{a}^{\mathrm{2}} −{b}}\:\:\:\:\left[\sqrt{\mathrm{2}+\sqrt{\mathrm{3}}}\right] \\ $$$$\Rightarrow{k}=\mathrm{2}−\sqrt{\mathrm{4}−\mathrm{3}}=\mathrm{1} \\ $$$$\mathrm{2}.\:\sqrt{\mathrm{2}+\sqrt{\mathrm{3}}}=\sqrt{\frac{\mathrm{1}}{\mathrm{2}}}\left(\mathrm{1}+\frac{\sqrt{\mathrm{3}}}{\mathrm{1}}\right)=\frac{\mathrm{1}+\sqrt{\mathrm{3}}}{\sqrt{\mathrm{2}}} \\ $$$${Can}\:{Anyone}\:{please}\:{try}\:{my}\:{formula} \\ $$

Commented by Kunal12588 last updated on 14/May/19

(√(2−(√3)))  1. find k  k=a+(√(a^2 −b))     [(√(2−(√3)))]  k=2+1=3  2. (√(2−(√3)))=(√(3/2))(1−((√3)/3))=(√(3/2))(1−(1/(√3)))=(((√3)−1)/(√2))

$$\sqrt{\mathrm{2}−\sqrt{\mathrm{3}}} \\ $$$$\mathrm{1}.\:{find}\:{k} \\ $$$${k}={a}+\sqrt{{a}^{\mathrm{2}} −{b}}\:\:\:\:\:\left[\sqrt{\mathrm{2}−\sqrt{\mathrm{3}}}\right] \\ $$$${k}=\mathrm{2}+\mathrm{1}=\mathrm{3} \\ $$$$\mathrm{2}.\:\sqrt{\mathrm{2}−\sqrt{\mathrm{3}}}=\sqrt{\frac{\mathrm{3}}{\mathrm{2}}}\left(\mathrm{1}−\frac{\sqrt{\mathrm{3}}}{\mathrm{3}}\right)=\sqrt{\frac{\mathrm{3}}{\mathrm{2}}}\left(\mathrm{1}−\frac{\mathrm{1}}{\sqrt{\mathrm{3}}}\right)=\frac{\sqrt{\mathrm{3}}−\mathrm{1}}{\sqrt{\mathrm{2}}} \\ $$

Commented by MJS last updated on 14/May/19

seems to work  but only if (√(a^2 −b))∈N otherwise it doesn′t  help

$$\mathrm{seems}\:\mathrm{to}\:\mathrm{work} \\ $$$$\mathrm{but}\:\mathrm{only}\:\mathrm{if}\:\sqrt{{a}^{\mathrm{2}} −{b}}\in\mathbb{N}\:\mathrm{otherwise}\:\mathrm{it}\:\mathrm{doesn}'\mathrm{t} \\ $$$$\mathrm{help} \\ $$

Commented by Kunal12588 last updated on 15/May/19

thank you sir

$${thank}\:{you}\:{sir} \\ $$

Terms of Service

Privacy Policy

Contact: info@tinkutara.com