Question and Answers Forum

All Questions      Topic List

Others Questions

Previous in All Question      Next in All Question      

Previous in Others      Next in Others      

Question Number 59752 by Khairun Nisa last updated on 14/May/19

Commented by Smail last updated on 14/May/19

((√(7+(√(48)))))^x +((√(7−(√(48)))))^x =14  ((√(7+(√(48)))))^x (((√(7+(√(48)))))^x +((√(7−(√(48)))))^x )=14((√(7+(√(48)))))^x   ((√(7+(√(48)))))^(2x) +((√((7+(√(48)))(7−(√(48))))))^x −14((√(7+(√(48)))))^x =0  (((√(7+(√(48)))))^x )^2 −14((√(7+(√(48)))))^x +1=0  (((√(7+(√(48)))))^x −7)^2 +1−49=0  ((√(7+(√(48)))))^x −7=+_− (√(48))  ((√(7+(√(48)))))^x =7+(√(48))  or =7−(√(48))  =((√(7+(√(48)))))^2   or =((1/(√(7+(√(48))))))^2 =((√(7+(√(48)))))^(−2)   x=2  or =−2

$$\left(\sqrt{\mathrm{7}+\sqrt{\mathrm{48}}}\right)^{{x}} +\left(\sqrt{\mathrm{7}−\sqrt{\mathrm{48}}}\right)^{{x}} =\mathrm{14} \\ $$$$\left(\sqrt{\mathrm{7}+\sqrt{\mathrm{48}}}\right)^{{x}} \left(\left(\sqrt{\mathrm{7}+\sqrt{\mathrm{48}}}\right)^{{x}} +\left(\sqrt{\mathrm{7}−\sqrt{\mathrm{48}}}\right)^{{x}} \right)=\mathrm{14}\left(\sqrt{\mathrm{7}+\sqrt{\mathrm{48}}}\right)^{{x}} \\ $$$$\left(\sqrt{\mathrm{7}+\sqrt{\mathrm{48}}}\right)^{\mathrm{2}{x}} +\left(\sqrt{\left(\mathrm{7}+\sqrt{\mathrm{48}}\right)\left(\mathrm{7}−\sqrt{\mathrm{48}}\right)}\right)^{{x}} −\mathrm{14}\left(\sqrt{\mathrm{7}+\sqrt{\mathrm{48}}}\right)^{{x}} =\mathrm{0} \\ $$$$\left(\left(\sqrt{\mathrm{7}+\sqrt{\mathrm{48}}}\right)^{{x}} \right)^{\mathrm{2}} −\mathrm{14}\left(\sqrt{\mathrm{7}+\sqrt{\mathrm{48}}}\right)^{{x}} +\mathrm{1}=\mathrm{0} \\ $$$$\left(\left(\sqrt{\mathrm{7}+\sqrt{\mathrm{48}}}\right)^{{x}} −\mathrm{7}\right)^{\mathrm{2}} +\mathrm{1}−\mathrm{49}=\mathrm{0} \\ $$$$\left(\sqrt{\mathrm{7}+\sqrt{\mathrm{48}}}\right)^{{x}} −\mathrm{7}=\underset{−} {+}\sqrt{\mathrm{48}} \\ $$$$\left(\sqrt{\mathrm{7}+\sqrt{\mathrm{48}}}\right)^{{x}} =\mathrm{7}+\sqrt{\mathrm{48}}\:\:{or}\:=\mathrm{7}−\sqrt{\mathrm{48}} \\ $$$$=\left(\sqrt{\mathrm{7}+\sqrt{\mathrm{48}}}\right)^{\mathrm{2}} \:\:{or}\:=\left(\frac{\mathrm{1}}{\sqrt{\mathrm{7}+\sqrt{\mathrm{48}}}}\right)^{\mathrm{2}} =\left(\sqrt{\mathrm{7}+\sqrt{\mathrm{48}}}\right)^{−\mathrm{2}} \\ $$$${x}=\mathrm{2}\:\:{or}\:=−\mathrm{2} \\ $$

Commented by Khairun Nisa last updated on 14/May/19

Thanku Sir

$${Thanku}\:{Sir} \\ $$

Answered by tanmay last updated on 14/May/19

7+(√(48))   7+2(√(3×4))   =2^2 +((√3) )^2 +2×2×(√3)   =(2+(√3) )^2   (2+(√3) )^x +(2−(√3) )^x =14  (1/(2+(√3)))=2−(√3)   (2+(√3))^x =a  a+(1/a)=14  a^2 −14a+1=0  a=((14±(√(196−4)))/2)  ((14±8(√3))/2)=7±4(√3)   (2+(√3) )^x =(7+4(√3) )  (2+(√3) )^x =(2+(√3) )^2   x=2  (2+(√3) )^x =(7−4(√3) )  (2+(√3) )^x =(1/((7+4(√3) )))  (2+(√3) )^x =(2+(√3) )^(−2)   x=−2  so x=±2

$$\mathrm{7}+\sqrt{\mathrm{48}}\: \\ $$$$\mathrm{7}+\mathrm{2}\sqrt{\mathrm{3}×\mathrm{4}}\: \\ $$$$=\mathrm{2}^{\mathrm{2}} +\left(\sqrt{\mathrm{3}}\:\right)^{\mathrm{2}} +\mathrm{2}×\mathrm{2}×\sqrt{\mathrm{3}}\: \\ $$$$=\left(\mathrm{2}+\sqrt{\mathrm{3}}\:\right)^{\mathrm{2}} \\ $$$$\left(\mathrm{2}+\sqrt{\mathrm{3}}\:\right)^{{x}} +\left(\mathrm{2}−\sqrt{\mathrm{3}}\:\right)^{{x}} =\mathrm{14} \\ $$$$\frac{\mathrm{1}}{\mathrm{2}+\sqrt{\mathrm{3}}}=\mathrm{2}−\sqrt{\mathrm{3}}\: \\ $$$$\left(\mathrm{2}+\sqrt{\mathrm{3}}\right)^{{x}} ={a} \\ $$$${a}+\frac{\mathrm{1}}{{a}}=\mathrm{14} \\ $$$${a}^{\mathrm{2}} −\mathrm{14}{a}+\mathrm{1}=\mathrm{0} \\ $$$${a}=\frac{\mathrm{14}\pm\sqrt{\mathrm{196}−\mathrm{4}}}{\mathrm{2}} \\ $$$$\frac{\mathrm{14}\pm\mathrm{8}\sqrt{\mathrm{3}}}{\mathrm{2}}=\mathrm{7}\pm\mathrm{4}\sqrt{\mathrm{3}}\: \\ $$$$\left(\mathrm{2}+\sqrt{\mathrm{3}}\:\right)^{{x}} =\left(\mathrm{7}+\mathrm{4}\sqrt{\mathrm{3}}\:\right) \\ $$$$\left(\mathrm{2}+\sqrt{\mathrm{3}}\:\right)^{{x}} =\left(\mathrm{2}+\sqrt{\mathrm{3}}\:\right)^{\mathrm{2}} \\ $$$${x}=\mathrm{2} \\ $$$$\left(\mathrm{2}+\sqrt{\mathrm{3}}\:\right)^{{x}} =\left(\mathrm{7}−\mathrm{4}\sqrt{\mathrm{3}}\:\right) \\ $$$$\left(\mathrm{2}+\sqrt{\mathrm{3}}\:\right)^{{x}} =\frac{\mathrm{1}}{\left(\mathrm{7}+\mathrm{4}\sqrt{\mathrm{3}}\:\right)} \\ $$$$\left(\mathrm{2}+\sqrt{\mathrm{3}}\:\right)^{{x}} =\left(\mathrm{2}+\sqrt{\mathrm{3}}\:\right)^{−\mathrm{2}} \\ $$$${x}=−\mathrm{2} \\ $$$${so}\:{x}=\pm\mathrm{2} \\ $$$$ \\ $$$$ \\ $$

Commented by Khairun Nisa last updated on 14/May/19

Thanku Sir

$${Thanku}\:{Sir} \\ $$

Commented by tanmay last updated on 14/May/19

most welcome

$${most}\:{welcome} \\ $$

Terms of Service

Privacy Policy

Contact: info@tinkutara.com