Question and Answers Forum

All Questions      Topic List

Others Questions

Previous in All Question      Next in All Question      

Previous in Others      Next in Others      

Question Number 59655 by aliesam last updated on 13/May/19

Commented by Mr X pcx last updated on 13/May/19

r=ξ(√(x^2  +y^2  )) ⇒(∂r/∂x) =((ξx)/(√(x^2  +y^2 ))) =((ξx)/r)  (∂θ/∂y) =ξ(y/(√(x^2 +y^2 ))) =((ξy)/r) ⇒  ((∂r/∂x))^2  +((∂r/∂y))^2  =(x^2 /r^2 ) +(y^2 /r^2 ) =(r^2 /r^2 ) =1  we have θ =arctan((y/x)) ⇒  (∂θ/∂x) =−(y/(x^2 (1+(y^2 /x^2 )))) =−(y/(x^2  +y^2 ))  (∂θ/∂y) =(1/(x(1+(y^2 /x^2 )))) =(1/(x+(y^2 /x))) =(x/(x^2  +y^2 )) ⇒  r^2 { ((∂θ/∂x))^2  +((∂θ/∂y))^2 } =r^2 { (y^2 /r^4 ) +(x^2 /r^4 )}  =(1/r^2 )(r^2 ) =1 ⇒the result is proved

$${r}=\xi\sqrt{{x}^{\mathrm{2}} \:+{y}^{\mathrm{2}} \:}\:\Rightarrow\frac{\partial{r}}{\partial{x}}\:=\frac{\xi{x}}{\sqrt{{x}^{\mathrm{2}} \:+{y}^{\mathrm{2}} }}\:=\frac{\xi{x}}{{r}} \\ $$$$\frac{\partial\theta}{\partial{y}}\:=\xi\frac{{y}}{\sqrt{{x}^{\mathrm{2}} +{y}^{\mathrm{2}} }}\:=\frac{\xi{y}}{{r}}\:\Rightarrow \\ $$$$\left(\frac{\partial{r}}{\partial{x}}\right)^{\mathrm{2}} \:+\left(\frac{\partial{r}}{\partial{y}}\right)^{\mathrm{2}} \:=\frac{{x}^{\mathrm{2}} }{{r}^{\mathrm{2}} }\:+\frac{{y}^{\mathrm{2}} }{{r}^{\mathrm{2}} }\:=\frac{{r}^{\mathrm{2}} }{{r}^{\mathrm{2}} }\:=\mathrm{1} \\ $$$${we}\:{have}\:\theta\:={arctan}\left(\frac{{y}}{{x}}\right)\:\Rightarrow \\ $$$$\frac{\partial\theta}{\partial{x}}\:=−\frac{{y}}{{x}^{\mathrm{2}} \left(\mathrm{1}+\frac{{y}^{\mathrm{2}} }{{x}^{\mathrm{2}} }\right)}\:=−\frac{{y}}{{x}^{\mathrm{2}} \:+{y}^{\mathrm{2}} } \\ $$$$\frac{\partial\theta}{\partial{y}}\:=\frac{\mathrm{1}}{{x}\left(\mathrm{1}+\frac{{y}^{\mathrm{2}} }{{x}^{\mathrm{2}} }\right)}\:=\frac{\mathrm{1}}{{x}+\frac{{y}^{\mathrm{2}} }{{x}}}\:=\frac{{x}}{{x}^{\mathrm{2}} \:+{y}^{\mathrm{2}} }\:\Rightarrow \\ $$$${r}^{\mathrm{2}} \left\{\:\left(\frac{\partial\theta}{\partial{x}}\right)^{\mathrm{2}} \:+\left(\frac{\partial\theta}{\partial{y}}\right)^{\mathrm{2}} \right\}\:={r}^{\mathrm{2}} \left\{\:\frac{{y}^{\mathrm{2}} }{{r}^{\mathrm{4}} }\:+\frac{{x}^{\mathrm{2}} }{{r}^{\mathrm{4}} }\right\} \\ $$$$=\frac{\mathrm{1}}{{r}^{\mathrm{2}} }\left({r}^{\mathrm{2}} \right)\:=\mathrm{1}\:\Rightarrow{the}\:{result}\:{is}\:{proved} \\ $$$$ \\ $$

Commented by aliesam last updated on 13/May/19

excellent..

$${excellent}.. \\ $$

Commented by Mr X pcx last updated on 13/May/19

ξ=+^− 1

$$\xi=\overset{−} {+}\mathrm{1} \\ $$

Answered by tanmay last updated on 13/May/19

x=rcosθ  y=rsinθ  r^2 =x^2 +y^2   2r×(∂r/∂x)=2x  (∂r/∂x)=(x/r)=cosθ  ((∂r/∂x))^2 +((∂r/∂y))^2 =cos^2 θ+sin^2 θ=1  tanθ=(y/x)  sec^2 θ×(∂θ/∂x)=(∂/∂x)((y/x))  sec^2 θ×(∂θ/∂x)=((−y)/x^2 )  (∂θ/∂x)=((−rsinθ)/(r^2 cos^2 θ))×(1/(sec^2 θ))=((−sinθ)/r)  r((∂θ/∂x))=−sinθ  sec^2 θ×(∂θ/∂y)=(1/x)=(1/(rcosθ))  r((∂θ/∂y))=cosθ  so r^2 [((∂θ/∂x))^2 +((∂θ/∂y))^2 ]  =sin^2 θ+cos^2 θ  =1

$${x}={rcos}\theta \\ $$$${y}={rsin}\theta \\ $$$${r}^{\mathrm{2}} ={x}^{\mathrm{2}} +{y}^{\mathrm{2}} \\ $$$$\mathrm{2}{r}×\frac{\partial{r}}{\partial{x}}=\mathrm{2}{x} \\ $$$$\frac{\partial{r}}{\partial{x}}=\frac{{x}}{{r}}={cos}\theta \\ $$$$\left(\frac{\partial{r}}{\partial{x}}\right)^{\mathrm{2}} +\left(\frac{\partial{r}}{\partial{y}}\right)^{\mathrm{2}} ={cos}^{\mathrm{2}} \theta+{sin}^{\mathrm{2}} \theta=\mathrm{1} \\ $$$${tan}\theta=\frac{{y}}{{x}} \\ $$$${sec}^{\mathrm{2}} \theta×\frac{\partial\theta}{\partial{x}}=\frac{\partial}{\partial{x}}\left(\frac{{y}}{{x}}\right) \\ $$$${sec}^{\mathrm{2}} \theta×\frac{\partial\theta}{\partial{x}}=\frac{−{y}}{{x}^{\mathrm{2}} } \\ $$$$\frac{\partial\theta}{\partial{x}}=\frac{−{rsin}\theta}{{r}^{\mathrm{2}} {cos}^{\mathrm{2}} \theta}×\frac{\mathrm{1}}{{sec}^{\mathrm{2}} \theta}=\frac{−{sin}\theta}{{r}} \\ $$$${r}\left(\frac{\partial\theta}{\partial{x}}\right)=−{sin}\theta \\ $$$${sec}^{\mathrm{2}} \theta×\frac{\partial\theta}{\partial{y}}=\frac{\mathrm{1}}{{x}}=\frac{\mathrm{1}}{{rcos}\theta} \\ $$$${r}\left(\frac{\partial\theta}{\partial{y}}\right)={cos}\theta \\ $$$${so}\:{r}^{\mathrm{2}} \left[\left(\frac{\partial\theta}{\partial{x}}\right)^{\mathrm{2}} +\left(\frac{\partial\theta}{\partial{y}}\right)^{\mathrm{2}} \right] \\ $$$$={sin}^{\mathrm{2}} \theta+{cos}^{\mathrm{2}} \theta \\ $$$$=\mathrm{1} \\ $$

Commented by aliesam last updated on 13/May/19

thank you so much sir

$$\mathrm{thank}\:\mathrm{you}\:\mathrm{so}\:\mathrm{much}\:\mathrm{sir} \\ $$

Commented by tanmay last updated on 13/May/19

most welcome...yours questions are unique..

$${most}\:{welcome}...{yours}\:{questions}\:{are}\:{unique}.. \\ $$

Terms of Service

Privacy Policy

Contact: info@tinkutara.com