Question and Answers Forum

All Questions      Topic List

Geometry Questions

Previous in All Question      Next in All Question      

Previous in Geometry      Next in Geometry      

Question Number 59620 by ajfour last updated on 12/May/19

Commented by ajfour last updated on 12/May/19

Find dimensions of largest volume  cylinder inscribed within a hemi-  sphere of radius R (in shown orientation).

$$\mathrm{Find}\:\mathrm{dimensions}\:\mathrm{of}\:\mathrm{largest}\:\mathrm{volume} \\ $$$$\mathrm{cylinder}\:\mathrm{inscribed}\:\mathrm{within}\:\mathrm{a}\:\mathrm{hemi}- \\ $$$$\mathrm{sphere}\:\mathrm{of}\:\mathrm{radius}\:\mathrm{R}\:\left(\mathrm{in}\:\mathrm{shown}\:\mathrm{orientation}\right). \\ $$

Commented by MJS last updated on 12/May/19

more difficult: find the cylinder with the  largest surface  ⇒  l=((√(34(17−(√(17)))))/(17))R  r=((√(34(17+(√(17)))))/(68))R  S=(π/4)(1+(√(17)))R^2

$$\mathrm{more}\:\mathrm{difficult}:\:\mathrm{find}\:\mathrm{the}\:\mathrm{cylinder}\:\mathrm{with}\:\mathrm{the} \\ $$$$\mathrm{largest}\:\mathrm{surface} \\ $$$$\Rightarrow \\ $$$${l}=\frac{\sqrt{\mathrm{34}\left(\mathrm{17}−\sqrt{\mathrm{17}}\right)}}{\mathrm{17}}{R} \\ $$$${r}=\frac{\sqrt{\mathrm{34}\left(\mathrm{17}+\sqrt{\mathrm{17}}\right)}}{\mathrm{68}}{R} \\ $$$${S}=\frac{\pi}{\mathrm{4}}\left(\mathrm{1}+\sqrt{\mathrm{17}}\right){R}^{\mathrm{2}} \\ $$

Answered by MJS last updated on 12/May/19

R^2 −(l^2 /4)=4r^2 ⇒ r=(1/4)(√(4R^2 −l^2 ))  V=πlr^2 =(π/4)l(√(4R^2 −l^2 ))  (dV/dl)=(π/2)×((2R^2 −l^2 )/(√(4R^2 −l^2 )))=0 ⇒ l=(√2)R ⇒ r=((√2)/4)R ⇒  ⇒ V_(max) =((π(√2))/8)R^3

$${R}^{\mathrm{2}} −\frac{{l}^{\mathrm{2}} }{\mathrm{4}}=\mathrm{4}{r}^{\mathrm{2}} \Rightarrow\:{r}=\frac{\mathrm{1}}{\mathrm{4}}\sqrt{\mathrm{4}{R}^{\mathrm{2}} −{l}^{\mathrm{2}} } \\ $$$${V}=\pi{lr}^{\mathrm{2}} =\frac{\pi}{\mathrm{4}}{l}\sqrt{\mathrm{4}{R}^{\mathrm{2}} −{l}^{\mathrm{2}} } \\ $$$$\frac{{dV}}{{dl}}=\frac{\pi}{\mathrm{2}}×\frac{\mathrm{2}{R}^{\mathrm{2}} −{l}^{\mathrm{2}} }{\sqrt{\mathrm{4}{R}^{\mathrm{2}} −{l}^{\mathrm{2}} }}=\mathrm{0}\:\Rightarrow\:{l}=\sqrt{\mathrm{2}}{R}\:\Rightarrow\:{r}=\frac{\sqrt{\mathrm{2}}}{\mathrm{4}}{R}\:\Rightarrow \\ $$$$\Rightarrow\:{V}_{{max}} =\frac{\pi\sqrt{\mathrm{2}}}{\mathrm{8}}{R}^{\mathrm{3}} \\ $$

Commented by ajfour last updated on 13/May/19

Thank you Sir !

$$\mathrm{Thank}\:\mathrm{you}\:\mathrm{Sir}\:!\: \\ $$

Terms of Service

Privacy Policy

Contact: info@tinkutara.com