Question and Answers Forum

All Questions      Topic List

Integration Questions

Previous in All Question      Next in All Question      

Previous in Integration      Next in Integration      

Question Number 59509 by aliesam last updated on 11/May/19

Answered by MJS last updated on 11/May/19

∫csc πx dx=∫(dx/(sin πx))=       [t=πx → dx=(dt/π)]  =(1/π)∫(dt/(sin t))=       [u=tan (t/2) → dt=2(du/(u^2 +1))]  =(1/π)∫(du/u)=(1/π)ln u =(1/π)ln tan (t/2) =  =(1/π)ln tan (π/2)x +C  ∫_(1/6) ^(1/3) csc πx dx=(1/(2π))ln ((7+4(√3))/3) ≈.244351

$$\int\mathrm{csc}\:\pi{x}\:{dx}=\int\frac{{dx}}{\mathrm{sin}\:\pi{x}}= \\ $$$$\:\:\:\:\:\left[{t}=\pi{x}\:\rightarrow\:{dx}=\frac{{dt}}{\pi}\right] \\ $$$$=\frac{\mathrm{1}}{\pi}\int\frac{{dt}}{\mathrm{sin}\:{t}}= \\ $$$$\:\:\:\:\:\left[{u}=\mathrm{tan}\:\frac{{t}}{\mathrm{2}}\:\rightarrow\:{dt}=\mathrm{2}\frac{{du}}{{u}^{\mathrm{2}} +\mathrm{1}}\right] \\ $$$$=\frac{\mathrm{1}}{\pi}\int\frac{{du}}{{u}}=\frac{\mathrm{1}}{\pi}\mathrm{ln}\:{u}\:=\frac{\mathrm{1}}{\pi}\mathrm{ln}\:\mathrm{tan}\:\frac{{t}}{\mathrm{2}}\:= \\ $$$$=\frac{\mathrm{1}}{\pi}\mathrm{ln}\:\mathrm{tan}\:\frac{\pi}{\mathrm{2}}{x}\:+{C} \\ $$$$\underset{\mathrm{1}/\mathrm{6}} {\overset{\mathrm{1}/\mathrm{3}} {\int}}\mathrm{csc}\:\pi{x}\:{dx}=\frac{\mathrm{1}}{\mathrm{2}\pi}\mathrm{ln}\:\frac{\mathrm{7}+\mathrm{4}\sqrt{\mathrm{3}}}{\mathrm{3}}\:\approx.\mathrm{244351} \\ $$

Answered by aliesam last updated on 11/May/19

oh i am so sory my answer is mistake you are right thank you

$${oh}\:{i}\:{am}\:{so}\:{sory}\:{my}\:{answer}\:{is}\:{mistake}\:{you}\:{are}\:{right}\:{thank}\:{you}\: \\ $$

Commented by MJS last updated on 11/May/19

you′re welcome. you used a different path which  leads to the same result

$$\mathrm{you}'\mathrm{re}\:\mathrm{welcome}.\:\mathrm{you}\:\mathrm{used}\:\mathrm{a}\:\mathrm{different}\:\mathrm{path}\:\mathrm{which} \\ $$$$\mathrm{leads}\:\mathrm{to}\:\mathrm{the}\:\mathrm{same}\:\mathrm{result} \\ $$

Terms of Service

Privacy Policy

Contact: info@tinkutara.com