Question and Answers Forum

All Questions      Topic List

Trigonometry Questions

Previous in All Question      Next in All Question      

Previous in Trigonometry      Next in Trigonometry      

Question Number 59441 by rahul 19 last updated on 10/May/19

Answered by tanmay last updated on 10/May/19

sinx+2costcosx=2  4cos^2 t(1−sin^2 x)=4−4sinx+sin^2 x  cost=c   sinx=k  4c^2 (1−k^2 )=4−4k+k^2   k^2 +4c^2 k^2 −4k+4−4c^2 =0  k^2 (1+4c^2 )+k(−4)+4−4c^2 =0  k=((4±(√(16−4×(1+4c^2 )(4−4c^2 ))))/(2(1+4c^2 )))  =((4±(√(16−4(4−4c^2 +16c^2 −16c^4 )))/(2(1+4c^2 )))  =((4±(√(16−16+16c^2 −64c^2 +64c^4 )))/(2(1+4c^2 )))  =((4±(√(64c^4 −48c^2 )))/(2(1+4c^2 )))  64c^4 −48c^2 ≥0  16c^2 (4c^2 −3)≥0  16c^2 (2c+(√3) )(2c−(√3) )≥0  critcal value of c=0,((√3)/2),((−(√3))/2)  f(c)=16c^2 (2c+(√3) )(2c−(√3) )  f(c)>0  when c>((√3)/2)  f(c)>0  when c<((−(√3))/2)  f(c)<0  when ((√3)/2)>c>0  f(c) <0      when 0> c>((−(√3))/2)  cost=((√3)/2)  →sint=(1/2)  rahul pls check mistake if any

$${sinx}+\mathrm{2}{costcosx}=\mathrm{2} \\ $$$$\mathrm{4}{cos}^{\mathrm{2}} {t}\left(\mathrm{1}−{sin}^{\mathrm{2}} {x}\right)=\mathrm{4}−\mathrm{4}{sinx}+{sin}^{\mathrm{2}} {x} \\ $$$${cost}={c}\:\:\:{sinx}={k} \\ $$$$\mathrm{4}{c}^{\mathrm{2}} \left(\mathrm{1}−{k}^{\mathrm{2}} \right)=\mathrm{4}−\mathrm{4}{k}+{k}^{\mathrm{2}} \\ $$$${k}^{\mathrm{2}} +\mathrm{4}{c}^{\mathrm{2}} {k}^{\mathrm{2}} −\mathrm{4}{k}+\mathrm{4}−\mathrm{4}{c}^{\mathrm{2}} =\mathrm{0} \\ $$$${k}^{\mathrm{2}} \left(\mathrm{1}+\mathrm{4}{c}^{\mathrm{2}} \right)+{k}\left(−\mathrm{4}\right)+\mathrm{4}−\mathrm{4}{c}^{\mathrm{2}} =\mathrm{0} \\ $$$${k}=\frac{\mathrm{4}\pm\sqrt{\mathrm{16}−\mathrm{4}×\left(\mathrm{1}+\mathrm{4}{c}^{\mathrm{2}} \right)\left(\mathrm{4}−\mathrm{4}{c}^{\mathrm{2}} \right)}}{\mathrm{2}\left(\mathrm{1}+\mathrm{4}{c}^{\mathrm{2}} \right)} \\ $$$$=\frac{\mathrm{4}\pm\sqrt{\mathrm{16}−\mathrm{4}\left(\mathrm{4}−\mathrm{4}{c}^{\mathrm{2}} +\mathrm{16}{c}^{\mathrm{2}} −\mathrm{16}{c}^{\mathrm{4}} \right.}}{\mathrm{2}\left(\mathrm{1}+\mathrm{4}{c}^{\mathrm{2}} \right)} \\ $$$$=\frac{\mathrm{4}\pm\sqrt{\mathrm{16}−\mathrm{16}+\mathrm{16}{c}^{\mathrm{2}} −\mathrm{64}{c}^{\mathrm{2}} +\mathrm{64}{c}^{\mathrm{4}} }}{\mathrm{2}\left(\mathrm{1}+\mathrm{4}{c}^{\mathrm{2}} \right)} \\ $$$$=\frac{\mathrm{4}\pm\sqrt{\mathrm{64}{c}^{\mathrm{4}} −\mathrm{48}{c}^{\mathrm{2}} }}{\mathrm{2}\left(\mathrm{1}+\mathrm{4}{c}^{\mathrm{2}} \right)} \\ $$$$\mathrm{64}{c}^{\mathrm{4}} −\mathrm{48}{c}^{\mathrm{2}} \geqslant\mathrm{0} \\ $$$$\mathrm{16}{c}^{\mathrm{2}} \left(\mathrm{4}{c}^{\mathrm{2}} −\mathrm{3}\right)\geqslant\mathrm{0} \\ $$$$\mathrm{16}{c}^{\mathrm{2}} \left(\mathrm{2}{c}+\sqrt{\mathrm{3}}\:\right)\left(\mathrm{2}{c}−\sqrt{\mathrm{3}}\:\right)\geqslant\mathrm{0} \\ $$$${critcal}\:{value}\:{of}\:{c}=\mathrm{0},\frac{\sqrt{\mathrm{3}}}{\mathrm{2}},\frac{−\sqrt{\mathrm{3}}}{\mathrm{2}} \\ $$$${f}\left({c}\right)=\mathrm{16}{c}^{\mathrm{2}} \left(\mathrm{2}{c}+\sqrt{\mathrm{3}}\:\right)\left(\mathrm{2}{c}−\sqrt{\mathrm{3}}\:\right) \\ $$$${f}\left({c}\right)>\mathrm{0}\:\:{when}\:{c}>\frac{\sqrt{\mathrm{3}}}{\mathrm{2}} \\ $$$${f}\left({c}\right)>\mathrm{0}\:\:{when}\:{c}<\frac{−\sqrt{\mathrm{3}}}{\mathrm{2}} \\ $$$${f}\left({c}\right)<\mathrm{0}\:\:{when}\:\frac{\sqrt{\mathrm{3}}}{\mathrm{2}}>{c}>\mathrm{0} \\ $$$${f}\left({c}\right)\:<\mathrm{0}\:\:\:\:\:\:{when}\:\mathrm{0}>\:{c}>\frac{−\sqrt{\mathrm{3}}}{\mathrm{2}} \\ $$$${cost}=\frac{\sqrt{\mathrm{3}}}{\mathrm{2}}\:\:\rightarrow{sint}=\frac{\mathrm{1}}{\mathrm{2}} \\ $$$${rahul}\:{pls}\:{check}\:{mistake}\:{if}\:{any} \\ $$

Commented by rahul 19 last updated on 10/May/19

thank u sir.

$${thank}\:{u}\:{sir}. \\ $$

Commented by tanmay last updated on 10/May/19

i want to share some informationfor you...pls  reply if you see this comment...

$${i}\:{want}\:{to}\:{share}\:{some}\:{informationfor}\:{you}...{pls} \\ $$$${reply}\:{if}\:{you}\:{see}\:{this}\:{comment}... \\ $$

Commented by rahul 19 last updated on 10/May/19

Sure,sir.

$${Sure},{sir}. \\ $$

Commented by tanmay last updated on 10/May/19

i have found another platform where you can  ask your doubt about phy+chem+math and  doubt is cleared by others just like this platform  but in that platform mostly students studying  for IIT indian students...  if you want i can share...

$${i}\:{have}\:{found}\:{another}\:{platform}\:{where}\:{you}\:{can} \\ $$$${ask}\:{your}\:{doubt}\:{about}\:{phy}+{chem}+{math}\:{and} \\ $$$${doubt}\:{is}\:{cleared}\:{by}\:{others}\:{just}\:{like}\:{this}\:{platform} \\ $$$${but}\:{in}\:{that}\:{platform}\:{mostly}\:{students}\:{studying} \\ $$$${for}\:{IIT}\:{indian}\:{students}... \\ $$$${if}\:{you}\:{want}\:{i}\:{can}\:{share}... \\ $$

Commented by rahul 19 last updated on 10/May/19

i′m sorry, but it′s too late for me now.  just 10−15 days more...  Anyways , thanks for the concern !

$${i}'{m}\:{sorry},\:{but}\:{it}'{s}\:{too}\:{late}\:{for}\:{me}\:{now}. \\ $$$${just}\:\mathrm{10}−\mathrm{15}\:{days}\:{more}... \\ $$$${Anyways}\:,\:{thanks}\:{for}\:{the}\:{concern}\:! \\ $$

Commented by tanmay last updated on 13/May/19

website goiit.com

$${website}\:{goiit}.{com} \\ $$

Commented by necx1 last updated on 13/May/19

please share

$${please}\:{share} \\ $$

Terms of Service

Privacy Policy

Contact: info@tinkutara.com