Question and Answers Forum

All Questions      Topic List

Geometry Questions

Previous in All Question      Next in All Question      

Previous in Geometry      Next in Geometry      

Question Number 58986 by ajfour last updated on 02/May/19

Commented by mr W last updated on 02/May/19

do you mean maximum area?  i think there is no maximum or  minimum perimeter, since  max. p → 4r, when C→M and B→N.  min. p → 2(r−a), when C→B→N.    max. Area=((r(r+a))/2)

$${do}\:{you}\:{mean}\:{maximum}\:{area}? \\ $$$${i}\:{think}\:{there}\:{is}\:{no}\:{maximum}\:{or} \\ $$$${minimum}\:{perimeter},\:{since} \\ $$$${max}.\:{p}\:\rightarrow\:\mathrm{4}{r},\:{when}\:{C}\rightarrow{M}\:{and}\:{B}\rightarrow{N}. \\ $$$${min}.\:{p}\:\rightarrow\:\mathrm{2}\left({r}−{a}\right),\:{when}\:{C}\rightarrow{B}\rightarrow{N}. \\ $$$$ \\ $$$${max}.\:{Area}=\frac{{r}\left({r}+{a}\right)}{\mathrm{2}} \\ $$

Commented by ajfour last updated on 02/May/19

I actually was curious about  max perimeter itself, 4r dont seem  obvious to me Sir.

$$\mathrm{I}\:\mathrm{actually}\:\mathrm{was}\:\mathrm{curious}\:\mathrm{about} \\ $$$$\mathrm{max}\:\mathrm{perimeter}\:\mathrm{itself},\:\mathrm{4r}\:\mathrm{dont}\:\mathrm{seem} \\ $$$$\mathrm{obvious}\:\mathrm{to}\:\mathrm{me}\:\mathrm{Sir}. \\ $$

Commented by mr W last updated on 02/May/19

AC≤AM  AB+BC≤AN+NM  ⇒p=AC+AB+BC≤AM+AN+NM=4r

$${AC}\leqslant{AM} \\ $$$${AB}+{BC}\leqslant{AN}+{NM} \\ $$$$\Rightarrow{p}={AC}+{AB}+{BC}\leqslant{AM}+{AN}+{NM}=\mathrm{4}{r} \\ $$

Answered by mr W last updated on 02/May/19

Commented by mr W last updated on 02/May/19

AB=(√(a^2 +r^2 −2ar cos α))  AC=(√(a^2 +r^2 +2ar cos β ))  BC=(√(2r^2 +2r^2 cos (α+β)))=r(√(2[1+cos (α+β)]))  p=(√(a^2 +r^2 −2ar cos α))+(√(a^2 +r^2 +2ar cos β ))+r(√(2[1+cos (α+β)]))  (∂p/∂α)=((ar sin α)/(√(a^2 +r^2 −2ar cos α)))−r((sin (α+β))/(√(2[1+cos (α+β)])))=0  ⇒((sin α)/(√(1+((r/a))^2 −2((r/a)) cos α)))=((sin (α+β))/(√(2[1+cos (α+β)])))  ⇒((sin α)/(√(1+λ^2 −2λ cos α)))=((sin (α+β))/(√(2[1+cos (α+β)])))  similarly  ⇒((−sin β)/(√(1+λ^2 +2λ cos β)))=((sin (α+β))/(√(2[1+cos (α+β)])))    ⇒((sin α)/(√(1+λ^2 −2λ cos α)))=((−sin β)/(√(1+λ^2 +2λ cos β)))  with μ=((1+λ^2 )/(2λ))  ⇒((sin α)/(√(μ−cos α)))=((−sin β)/(√(μ+cos β)))   ...(i)    α=β=0 (180°) fulfill the equations.   this is the only solution. if α≠0, β≠0,  from (i) we get sin α or sin β must be  negative, but this is not possible,  since 0≤α,β≤180°, sin α and sin β  are always positive.  ⇒min. or max. p is when B, C are  on the diameter of the circle.

$${AB}=\sqrt{{a}^{\mathrm{2}} +{r}^{\mathrm{2}} −\mathrm{2}{ar}\:\mathrm{cos}\:\alpha} \\ $$$${AC}=\sqrt{{a}^{\mathrm{2}} +{r}^{\mathrm{2}} +\mathrm{2}{ar}\:\mathrm{cos}\:\beta\:} \\ $$$${BC}=\sqrt{\mathrm{2}{r}^{\mathrm{2}} +\mathrm{2}{r}^{\mathrm{2}} \mathrm{cos}\:\left(\alpha+\beta\right)}={r}\sqrt{\mathrm{2}\left[\mathrm{1}+\mathrm{cos}\:\left(\alpha+\beta\right)\right]} \\ $$$${p}=\sqrt{{a}^{\mathrm{2}} +{r}^{\mathrm{2}} −\mathrm{2}{ar}\:\mathrm{cos}\:\alpha}+\sqrt{{a}^{\mathrm{2}} +{r}^{\mathrm{2}} +\mathrm{2}{ar}\:\mathrm{cos}\:\beta\:}+{r}\sqrt{\mathrm{2}\left[\mathrm{1}+\mathrm{cos}\:\left(\alpha+\beta\right)\right]} \\ $$$$\frac{\partial{p}}{\partial\alpha}=\frac{{ar}\:\mathrm{sin}\:\alpha}{\sqrt{{a}^{\mathrm{2}} +{r}^{\mathrm{2}} −\mathrm{2}{ar}\:\mathrm{cos}\:\alpha}}−{r}\frac{\mathrm{sin}\:\left(\alpha+\beta\right)}{\sqrt{\mathrm{2}\left[\mathrm{1}+\mathrm{cos}\:\left(\alpha+\beta\right)\right]}}=\mathrm{0} \\ $$$$\Rightarrow\frac{\mathrm{sin}\:\alpha}{\sqrt{\mathrm{1}+\left(\frac{{r}}{{a}}\right)^{\mathrm{2}} −\mathrm{2}\left(\frac{{r}}{{a}}\right)\:\mathrm{cos}\:\alpha}}=\frac{\mathrm{sin}\:\left(\alpha+\beta\right)}{\sqrt{\mathrm{2}\left[\mathrm{1}+\mathrm{cos}\:\left(\alpha+\beta\right)\right]}} \\ $$$$\Rightarrow\frac{\mathrm{sin}\:\alpha}{\sqrt{\mathrm{1}+\lambda^{\mathrm{2}} −\mathrm{2}\lambda\:\mathrm{cos}\:\alpha}}=\frac{\mathrm{sin}\:\left(\alpha+\beta\right)}{\sqrt{\mathrm{2}\left[\mathrm{1}+\mathrm{cos}\:\left(\alpha+\beta\right)\right]}} \\ $$$${similarly} \\ $$$$\Rightarrow\frac{−\mathrm{sin}\:\beta}{\sqrt{\mathrm{1}+\lambda^{\mathrm{2}} +\mathrm{2}\lambda\:\mathrm{cos}\:\beta}}=\frac{\mathrm{sin}\:\left(\alpha+\beta\right)}{\sqrt{\mathrm{2}\left[\mathrm{1}+\mathrm{cos}\:\left(\alpha+\beta\right)\right]}} \\ $$$$ \\ $$$$\Rightarrow\frac{\mathrm{sin}\:\alpha}{\sqrt{\mathrm{1}+\lambda^{\mathrm{2}} −\mathrm{2}\lambda\:\mathrm{cos}\:\alpha}}=\frac{−\mathrm{sin}\:\beta}{\sqrt{\mathrm{1}+\lambda^{\mathrm{2}} +\mathrm{2}\lambda\:\mathrm{cos}\:\beta}} \\ $$$${with}\:\mu=\frac{\mathrm{1}+\lambda^{\mathrm{2}} }{\mathrm{2}\lambda} \\ $$$$\Rightarrow\frac{\mathrm{sin}\:\alpha}{\sqrt{\mu−\mathrm{cos}\:\alpha}}=\frac{−\mathrm{sin}\:\beta}{\sqrt{\mu+\mathrm{cos}\:\beta}}\:\:\:...\left({i}\right) \\ $$$$ \\ $$$$\alpha=\beta=\mathrm{0}\:\left(\mathrm{180}°\right)\:{fulfill}\:{the}\:{equations}.\: \\ $$$${this}\:{is}\:{the}\:{only}\:{solution}.\:{if}\:\alpha\neq\mathrm{0},\:\beta\neq\mathrm{0}, \\ $$$${from}\:\left({i}\right)\:{we}\:{get}\:\mathrm{sin}\:\alpha\:{or}\:\mathrm{sin}\:\beta\:{must}\:{be} \\ $$$${negative},\:{but}\:{this}\:{is}\:{not}\:{possible}, \\ $$$${since}\:\mathrm{0}\leqslant\alpha,\beta\leqslant\mathrm{180}°,\:\mathrm{sin}\:\alpha\:{and}\:\mathrm{sin}\:\beta \\ $$$${are}\:{always}\:{positive}. \\ $$$$\Rightarrow{min}.\:{or}\:{max}.\:{p}\:{is}\:{when}\:{B},\:{C}\:{are} \\ $$$${on}\:{the}\:{diameter}\:{of}\:{the}\:{circle}. \\ $$

Commented by ajfour last updated on 03/May/19

Thank you sir. (you knew it before  proving, and you proved it too).

$${Thank}\:\mathrm{you}\:\mathrm{sir}.\:\left(\mathrm{you}\:\mathrm{knew}\:\mathrm{it}\:\mathrm{before}\right. \\ $$$$\left.\mathrm{proving},\:\mathrm{and}\:\mathrm{you}\:\mathrm{proved}\:\mathrm{it}\:\mathrm{too}\right). \\ $$

Terms of Service

Privacy Policy

Contact: info@tinkutara.com