Previous in Probability and Statistics Next in Probability and Statistics | ||
Question Number 57863 by mr W last updated on 13/Apr/19 | ||
Commented by tanmay.chaudhury50@gmail.com last updated on 13/Apr/19 | ||
Commented by tanmay.chaudhury50@gmail.com last updated on 13/Apr/19 | ||
Answered by tanmay.chaudhury50@gmail.com last updated on 13/Apr/19 | ||
$$\left({x}+{x}^{\mathrm{2}} +{x}^{\mathrm{3}} +{x}^{\mathrm{4}} +{x}^{\mathrm{5}} +{x}^{\mathrm{6}} \right)^{\mathrm{3}} \\ $$$$={x}^{\mathrm{3}} \left(\mathrm{1}+{x}+{x}^{\mathrm{2}} +{x}^{\mathrm{3}} +{x}^{\mathrm{4}} +{x}^{\mathrm{5}} \right)^{\mathrm{3}} \\ $$$$={x}^{\mathrm{3}} ×\left(\frac{\mathrm{1}−{x}^{\mathrm{6}} }{\mathrm{1}−{x}}\right)^{\mathrm{3}} \\ $$$$={x}^{\mathrm{3}} ×\left(\mathrm{1}−{x}^{\mathrm{6}} \right)^{\mathrm{3}} ×\left(\mathrm{1}−{x}\right)^{−\mathrm{3}} \\ $$$$={x}^{\mathrm{3}} \left(\mathrm{1}−\mathrm{3}{x}^{\mathrm{6}} +\mathrm{3}{x}^{\mathrm{12}} −{x}^{\mathrm{18}} \right)\left(\mathrm{1}+\mathrm{3}{x}+\mathrm{6}{x}^{\mathrm{2}} +\mathrm{10}{x}^{\mathrm{3}} +..+\frac{\left({r}+\mathrm{1}\right)\left({r}+\mathrm{2}\right)}{\mathrm{1}×\mathrm{2}}{x}^{{r}} +..\right) \\ $$$${coefficiejt}\:{of}\:{x}\:\rightarrow{in}\:{x}^{\mathrm{3}} \:{is}\:\mathrm{1}\rightarrow\:\:\:\:\:\:\left({k}=\mathrm{3}\right) \\ $$$${coefficient}\:{of}\:{x}\rightarrow{x}^{\mathrm{4}} \rightarrow\mathrm{3}{x}^{\mathrm{4}} \:{is}\:\mathrm{3}\rightarrow\:\:\:\:\left({k}=\mathrm{4}\right) \\ $$$${coeeficien}\:{of}\:{x}^{} \rightarrow{x}^{\mathrm{5}} \rightarrow{x}^{\mathrm{3}} ×\mathrm{6}{x}^{\mathrm{2}} \:{is}\mathrm{6}\:\:\rightarrow\:\:\:\left({k}=\mathrm{5}\right) \\ $$$${coefficient}\:{of}\:{x}\rightarrow{x}^{\mathrm{6}} \rightarrow{x}^{\mathrm{3}} ×\mathrm{10}{x}^{\mathrm{3}} \:{is}\mathrm{10}\rightarrow\:\:\:\left({k}=\mathrm{6}\right) \\ $$$${coefficient}\:{of}\:{x}\rightarrow{x}^{\mathrm{7}} \rightarrow{x}^{\mathrm{3}} ×\frac{\left(\mathrm{4}+\mathrm{1}\right)\left(\mathrm{4}+\mathrm{2}\right)}{\mathrm{1}×\mathrm{2}}{x}^{\mathrm{4}} {is}\:\mathrm{15}\rightarrow\left({k}=\mathrm{7}\right) \\ $$$${coefficient}\:{of}\:{x}\rightarrow{x}^{\mathrm{8}} \rightarrow{x}^{\mathrm{3}} ×\frac{\left(\mathrm{5}+\mathrm{1}\right)\left(\mathrm{5}+\mathrm{2}\right)}{\mathrm{1}×\mathrm{2}}{x}^{\mathrm{5}} \:{is}\mathrm{21}\left(\:{k}=\mathrm{8}\right) \\ $$$${wait}\:{sir}... \\ $$$${require}\:{d}\:{ans}=\frac{\mathrm{1}+\mathrm{3}+\mathrm{6}+\mathrm{10}+\mathrm{15}+\mathrm{21}}{\mathrm{6}×\mathrm{6}×\mathrm{6}}=\frac{\mathrm{56}}{\mathrm{6}×\mathrm{6}×\mathrm{6}}=\frac{\mathrm{14}}{\mathrm{9}×\mathrm{6}}=\frac{\mathrm{7}}{\mathrm{27}} \\ $$$$ \\ $$ | ||
Commented by mr W last updated on 14/Apr/19 | ||
$${thank}\:{you}\:{very}\:{much}\:{sir}! \\ $$$${your}\:{book}\:{is}\:{very}\:{interesting}. \\ $$ | ||
Commented by tanmay.chaudhury50@gmail.com last updated on 14/Apr/19 | ||
$${we}\:{are}\:{student}\:...{we}\:{learn}\:{everyday}...{i}\:{have}\:{learnt}\:{from} \\ $$$${higher}\:{algebra}\:{Hall}\:{and}\:{knight}... \\ $$ | ||