Question Number 57385 by Tinkutara last updated on 03/Apr/19 | ||
Commented by Tinkutara last updated on 03/Apr/19 | ||
How to prove d? | ||
Answered by einsteindrmaths@hotmail.fr last updated on 03/Apr/19 | ||
$${S}_{{n}} <\underset{\mathrm{0}} {\overset{\infty} {\sum}}\frac{{n}}{{n}^{\mathrm{2}} +{kn}+{k}^{\mathrm{2}} }={lim}_{{n}\rightarrow\infty} \:\underset{\mathrm{0}} {\overset{{n}} {\sum}}\frac{{n}}{{n}^{\mathrm{2}} +{kn}+{k}^{\mathrm{2}} }={lim}_{{n}\rightarrow\infty} \frac{\mathrm{1}}{{n}}\underset{\mathrm{0}} {\overset{{n}} {\sum}}\frac{\mathrm{1}}{\mathrm{1}+\frac{{k}}{{n}}+\left(\frac{{k}}{{n}}\right)^{\mathrm{2}} } \\ $$$$=\underset{\mathrm{0}} {\overset{\mathrm{1}} {\int}}\frac{\mathrm{1}}{\mathrm{1}+{x}+{x}^{\mathrm{2}} }=\underset{\mathrm{0}} {\overset{\mathrm{1}} {\int}}\frac{\mathrm{1}}{\left({x}+\frac{\mathrm{1}}{\mathrm{2}}\right)^{\mathrm{2}} +\frac{\mathrm{3}}{\mathrm{4}}}=\frac{\mathrm{2}}{\sqrt{\mathrm{3}}}{tan}^{−\mathrm{1}} \left[\frac{\mathrm{2}}{\sqrt{\mathrm{3}}}+\frac{\mathrm{2}}{\mathrm{2}\sqrt{\mathrm{3}}}\right]−\frac{\mathrm{2}}{\sqrt{\mathrm{3}}}{tan}^{−\mathrm{1}} \left[\frac{\mathrm{2}}{\mathrm{2}\sqrt{\mathrm{3}}}\right]<\frac{\mathrm{2}}{\sqrt{\mathrm{3}}}{tan}^{−\mathrm{1}} \left(\sqrt{\left.\mathrm{3}\right)}\right. \\ $$ | ||
Commented by Tinkutara last updated on 03/Apr/19 | ||
Sir please prove d option, I already got a | ||