Question and Answers Forum

All Questions      Topic List

Integration Questions

Previous in All Question      Next in All Question      

Previous in Integration      Next in Integration      

Question Number 57385 by Tinkutara last updated on 03/Apr/19

Commented by Tinkutara last updated on 03/Apr/19

How to prove d?

Answered by einsteindrmaths@hotmail.fr last updated on 03/Apr/19

S_n <Σ_0 ^∞ (n/(n^2 +kn+k^2 ))=lim_(n→∞)  Σ_0 ^n (n/(n^2 +kn+k^2 ))=lim_(n→∞) (1/n)Σ_0 ^n (1/(1+(k/n)+((k/n))^2 ))  =∫_0 ^1 (1/(1+x+x^2 ))=∫_0 ^1 (1/((x+(1/2))^2 +(3/4)))=(2/(√3))tan^(−1) [(2/(√3))+(2/(2(√3)))]−(2/(√3))tan^(−1) [(2/(2(√3)))]<(2/(√3))tan^(−1) ((√(3)))

$${S}_{{n}} <\underset{\mathrm{0}} {\overset{\infty} {\sum}}\frac{{n}}{{n}^{\mathrm{2}} +{kn}+{k}^{\mathrm{2}} }={lim}_{{n}\rightarrow\infty} \:\underset{\mathrm{0}} {\overset{{n}} {\sum}}\frac{{n}}{{n}^{\mathrm{2}} +{kn}+{k}^{\mathrm{2}} }={lim}_{{n}\rightarrow\infty} \frac{\mathrm{1}}{{n}}\underset{\mathrm{0}} {\overset{{n}} {\sum}}\frac{\mathrm{1}}{\mathrm{1}+\frac{{k}}{{n}}+\left(\frac{{k}}{{n}}\right)^{\mathrm{2}} } \\ $$$$=\underset{\mathrm{0}} {\overset{\mathrm{1}} {\int}}\frac{\mathrm{1}}{\mathrm{1}+{x}+{x}^{\mathrm{2}} }=\underset{\mathrm{0}} {\overset{\mathrm{1}} {\int}}\frac{\mathrm{1}}{\left({x}+\frac{\mathrm{1}}{\mathrm{2}}\right)^{\mathrm{2}} +\frac{\mathrm{3}}{\mathrm{4}}}=\frac{\mathrm{2}}{\sqrt{\mathrm{3}}}{tan}^{−\mathrm{1}} \left[\frac{\mathrm{2}}{\sqrt{\mathrm{3}}}+\frac{\mathrm{2}}{\mathrm{2}\sqrt{\mathrm{3}}}\right]−\frac{\mathrm{2}}{\sqrt{\mathrm{3}}}{tan}^{−\mathrm{1}} \left[\frac{\mathrm{2}}{\mathrm{2}\sqrt{\mathrm{3}}}\right]<\frac{\mathrm{2}}{\sqrt{\mathrm{3}}}{tan}^{−\mathrm{1}} \left(\sqrt{\left.\mathrm{3}\right)}\right. \\ $$

Commented by Tinkutara last updated on 03/Apr/19

Sir please prove d option, I already got a

Terms of Service

Privacy Policy

Contact: info@tinkutara.com