Question and Answers Forum

All Questions      Topic List

None Questions

Previous in All Question      Next in All Question      

Previous in None      Next in None      

Question Number 53805 by hassentimol last updated on 26/Jan/19

Commented by tanmay.chaudhury50@gmail.com last updated on 26/Jan/19

Commented by tanmay.chaudhury50@gmail.com last updated on 26/Jan/19

from graph   lim_(x→0) x^x =1  lim_(x→0) x^x (1+lnx)  lim_(x→0) x^x ×lim_(x→0) (1+lnx)  1×(−∞)=−∞

$${from}\:{graph}\: \\ $$$$\underset{{x}\rightarrow\mathrm{0}} {\mathrm{lim}}{x}^{{x}} =\mathrm{1} \\ $$$$\underset{{x}\rightarrow\mathrm{0}} {\mathrm{lim}}{x}^{{x}} \left(\mathrm{1}+{lnx}\right) \\ $$$$\underset{{x}\rightarrow\mathrm{0}} {\mathrm{lim}}{x}^{{x}} ×\underset{{x}\rightarrow\mathrm{0}} {\mathrm{lim}}\left(\mathrm{1}+{lnx}\right) \\ $$$$\mathrm{1}×\left(−\infty\right)=−\infty \\ $$

Commented by maxmathsup by imad last updated on 26/Jan/19

we have  for x>0     x^x =e^(xln(x))  ⇒(x^x )^′ =(xln(x))^′ e^(xln(x))   =(lnx +1)x^x  =x^x   +ln(x).x^x   we have lim_(x→0^+ )    {x^x  +x^x ln(x)} =lim_(x→0^+ )    x^x  +lim_(x→0^+ )   x^x ln(x) but  lim_(x→0^+ )     x^x =lim_(x→0^+ )     e^(xln(x)) =e^0 =1   but x^x  =e^(xln(x))  ∼1+xln(x) ⇒x^x ln(x) ∼ln(x)+x(ln(x))^2   =ln(x){1+xln(x)} →−∞ (x→0^+ ) ⇒  lim_(x→0^+ )     {x^x  +x^x ln(x)} =−∞ .

$${we}\:{have}\:\:{for}\:{x}>\mathrm{0}\:\:\:\:\:{x}^{{x}} ={e}^{{xln}\left({x}\right)} \:\Rightarrow\left({x}^{{x}} \right)^{'} =\left({xln}\left({x}\right)\right)^{'} {e}^{{xln}\left({x}\right)} \\ $$$$=\left({lnx}\:+\mathrm{1}\right){x}^{{x}} \:={x}^{{x}} \:\:+{ln}\left({x}\right).{x}^{{x}} \\ $$$${we}\:{have}\:{lim}_{{x}\rightarrow\mathrm{0}^{+} } \:\:\:\left\{{x}^{{x}} \:+{x}^{{x}} {ln}\left({x}\right)\right\}\:={lim}_{{x}\rightarrow\mathrm{0}^{+} } \:\:\:{x}^{{x}} \:+{lim}_{{x}\rightarrow\mathrm{0}^{+} } \:\:{x}^{{x}} {ln}\left({x}\right)\:{but} \\ $$$${lim}_{{x}\rightarrow\mathrm{0}^{+} } \:\:\:\:{x}^{{x}} ={lim}_{{x}\rightarrow\mathrm{0}^{+} } \:\:\:\:{e}^{{xln}\left({x}\right)} ={e}^{\mathrm{0}} =\mathrm{1} \\ $$$$\:{but}\:{x}^{{x}} \:={e}^{{xln}\left({x}\right)} \:\sim\mathrm{1}+{xln}\left({x}\right)\:\Rightarrow{x}^{{x}} {ln}\left({x}\right)\:\sim{ln}\left({x}\right)+{x}\left({ln}\left({x}\right)\right)^{\mathrm{2}} \\ $$$$={ln}\left({x}\right)\left\{\mathrm{1}+{xln}\left({x}\right)\right\}\:\rightarrow−\infty\:\left({x}\rightarrow\mathrm{0}^{+} \right)\:\Rightarrow \\ $$$${lim}_{{x}\rightarrow\mathrm{0}^{+} } \:\:\:\:\left\{{x}^{{x}} \:+{x}^{{x}} {ln}\left({x}\right)\right\}\:=−\infty\:. \\ $$

Commented by hassentimol last updated on 29/Jan/19

Thank you so much !

$$\mathrm{Thank}\:\mathrm{you}\:\mathrm{so}\:\mathrm{much}\:! \\ $$

Answered by tanmay.chaudhury50@gmail.com last updated on 26/Jan/19

y=x^x   lny=xlnx  (1/y)(dy/dx)=x((dlnx)/dx)+lnx(dx/dx)  (dy/dx)=y(x×(1/x)+lnx)=x^x (1+lnx)

$${y}={x}^{{x}} \\ $$$${lny}={xlnx} \\ $$$$\frac{\mathrm{1}}{{y}}\frac{{dy}}{{dx}}={x}\frac{{dlnx}}{{dx}}+{lnx}\frac{{dx}}{{dx}} \\ $$$$\frac{{dy}}{{dx}}={y}\left({x}×\frac{\mathrm{1}}{{x}}+{lnx}\right)={x}^{{x}} \left(\mathrm{1}+{lnx}\right) \\ $$

Terms of Service

Privacy Policy

Contact: info@tinkutara.com