Question Number 53689 by ajfour last updated on 25/Jan/19 | ||
Commented by ajfour last updated on 25/Jan/19 | ||
$${Find}\:{R}\:{in}\:{terms}\:{of}\:{a},{b},\:{and}\:{r}. \\ $$ | ||
Answered by mr W last updated on 25/Jan/19 | ||
$${A}\left(\mathrm{0},\:\mathrm{2}{r}−{b}\right) \\ $$$${C}\left(\mathrm{0},\:−{k}\right) \\ $$$${k}={R}+{b}−\mathrm{2}{r}\Rightarrow{R}={k}+\mathrm{2}{r}−{b} \\ $$$$ \\ $$$${eqn}.\:{of}\:{big}\:{circle}: \\ $$$${x}^{\mathrm{2}} +\left({y}+{k}\right)^{\mathrm{2}} ={R}^{\mathrm{2}} \\ $$$$\frac{{x}^{\mathrm{2}} }{{a}^{\mathrm{2}} }+\frac{{y}^{\mathrm{2}} }{{b}^{\mathrm{2}} }=\mathrm{1} \\ $$$$\frac{{R}^{\mathrm{2}} −\left({y}+{k}\right)^{\mathrm{2}} }{{a}^{\mathrm{2}} }+\frac{{y}^{\mathrm{2}} }{{b}^{\mathrm{2}} }=\mathrm{1} \\ $$$${b}^{\mathrm{2}} {R}^{\mathrm{2}} −{b}^{\mathrm{2}} {y}^{\mathrm{2}} −{b}^{\mathrm{2}} {k}^{\mathrm{2}} −\mathrm{2}{kb}^{\mathrm{2}} {y}+{a}^{\mathrm{2}} {y}^{\mathrm{2}} ={a}^{\mathrm{2}} {b}^{\mathrm{2}} \\ $$$$\left({a}^{\mathrm{2}} −{b}^{\mathrm{2}} \right){y}^{\mathrm{2}} −\mathrm{2}{kb}^{\mathrm{2}} {y}+{b}^{\mathrm{2}} \left({R}^{\mathrm{2}} −{a}^{\mathrm{2}} −{k}^{\mathrm{2}} \right)=\mathrm{0} \\ $$$$\Delta=\mathrm{4}{k}^{\mathrm{2}} {b}^{\mathrm{4}} −\mathrm{4}\left({a}^{\mathrm{2}} −{b}^{\mathrm{2}} \right){b}^{\mathrm{2}} \left({R}^{\mathrm{2}} −{a}^{\mathrm{2}} −{k}^{\mathrm{2}} \right)=\mathrm{0} \\ $$$${k}^{\mathrm{2}} {b}^{\mathrm{2}} −\left({a}^{\mathrm{2}} −{b}^{\mathrm{2}} \right)\left({R}^{\mathrm{2}} −{a}^{\mathrm{2}} −{k}^{\mathrm{2}} \right)=\mathrm{0} \\ $$$${k}^{\mathrm{2}} {b}^{\mathrm{2}} −\left({a}^{\mathrm{2}} −{b}^{\mathrm{2}} \right)\left[\left({k}+\mathrm{2}{r}−{b}\right)^{\mathrm{2}} −{a}^{\mathrm{2}} −{k}^{\mathrm{2}} \right]=\mathrm{0} \\ $$$$\Rightarrow{b}^{\mathrm{2}} {k}^{\mathrm{2}} −\mathrm{2}\left({a}^{\mathrm{2}} −{b}^{\mathrm{2}} \right)\left(\mathrm{2}{r}−{b}\right){k}−\left({a}^{\mathrm{2}} −{b}^{\mathrm{2}} \right)\left(\mathrm{2}{r}−{b}−{a}\right)\left(\mathrm{2}{r}−{b}+{a}\right)=\mathrm{0} \\ $$$$\Rightarrow{k}=\frac{\left({a}^{\mathrm{2}} −{b}^{\mathrm{2}} \right)\left(\mathrm{2}{r}−{b}\right)\pm\sqrt{\left({a}^{\mathrm{2}} −{b}^{\mathrm{2}} \right)\left[\left({a}^{\mathrm{2}} −{b}^{\mathrm{2}} \right)\left(\mathrm{2}{r}−{b}\right)^{\mathrm{2}} +{b}^{\mathrm{2}} \left(\mathrm{2}{r}−{b}−{a}\right)\left(\mathrm{2}{r}−{b}+{a}\right)\right]}}{{b}^{\mathrm{2}} } \\ $$$$\Rightarrow{k}=\frac{\left({a}^{\mathrm{2}} −{b}^{\mathrm{2}} \right)\left(\mathrm{2}{r}−{b}\right)\pm\mathrm{2}{a}\sqrt{\left({a}^{\mathrm{2}} −{b}^{\mathrm{2}} \right)\left({r}−{b}\right){r}}}{{b}^{\mathrm{2}} } \\ $$$$\Rightarrow{R}=\mathrm{2}{r}−{b}+\frac{\left({a}^{\mathrm{2}} −{b}^{\mathrm{2}} \right)\left(\mathrm{2}{r}−{b}\right)\pm\mathrm{2}{a}\sqrt{\left({a}^{\mathrm{2}} −{b}^{\mathrm{2}} \right)\left({r}−{b}\right){r}}}{{b}^{\mathrm{2}} } \\ $$$$\Rightarrow{R}=\frac{{a}^{\mathrm{2}} \left(\mathrm{2}{r}−{b}\right)\pm\mathrm{2}{a}\sqrt{\left({a}^{\mathrm{2}} −{b}^{\mathrm{2}} \right)\left({r}−{b}\right){r}}}{{b}^{\mathrm{2}} } \\ $$ | ||
Commented by ajfour last updated on 25/Jan/19 | ||
$${thanks},\:{Sir}.\:{How}\:{to}\:{choose}\:{among}\:{the}\:{signs}? \\ $$ | ||
Commented by mr W last updated on 25/Jan/19 | ||
$${take}\:+ \\ $$$$−\:{is}\:{for}\:{the}\:{small}\:{circle}\:{under}\:{point}\:{A} \\ $$$${btw}.\:{small}\:{circle}\:{and}\:{ellipse}. \\ $$ | ||
Commented by ajfour last updated on 25/Jan/19 | ||
$${Yes}\:{sir},\:{understood},\:{as}\:{i}\:{attempted}. \\ $$ | ||
Answered by ajfour last updated on 25/Jan/19 | ||
$${eq}.\:{of}\:{ellipse}\:\:{x}^{\mathrm{2}} +\frac{{a}^{\mathrm{2}} }{{b}^{\mathrm{2}} }{y}^{\mathrm{2}} ={a}^{\mathrm{2}} \\ $$$${C}\left(\mathrm{0},−{k}\right) \\ $$$$\mathrm{2}{r}−\left({b}−{k}\right)={R} \\ $$$$\Rightarrow\:{k}={R}−\mathrm{2}{r}+{b}\:\:\:...\left({i}\right) \\ $$$${eq}.\:{of}\:{circumcircle} \\ $$$$\:\:\:\:{x}^{\mathrm{2}} +\left({y}+{k}\right)^{\mathrm{2}} ={R}^{\mathrm{2}} \\ $$$${As}\:{ellipse}\:{and}\:{circle}\:{graze}, \\ $$$$\Rightarrow\:{R}^{\mathrm{2}} −\left({y}+{k}\right)^{\mathrm{2}} +\frac{{a}^{\mathrm{2}} {y}^{\mathrm{2}} }{{b}^{\mathrm{2}} }={a}^{\mathrm{2}} \:\:\:{should} \\ $$$${yield}\:{double}\:{root}\:{for}\:{y}. \\ $$$${y}^{\mathrm{2}} \left(\frac{{a}^{\mathrm{2}} }{{b}^{\mathrm{2}} }−\mathrm{1}\right)−\mathrm{2}{ky}+{R}^{\mathrm{2}} −{a}^{\mathrm{2}} −{k}^{\mathrm{2}} =\:\mathrm{0} \\ $$$${D}=\mathrm{0},\:\:\:\Rightarrow \\ $$$$\:\:\:\:\mathrm{4}{k}^{\mathrm{2}} =\mathrm{4}\left(\frac{{a}^{\mathrm{2}} }{{b}^{\mathrm{2}} }−\mathrm{1}\right)\left({R}^{\mathrm{2}} −{a}^{\mathrm{2}} −{k}^{\mathrm{2}} \right) \\ $$$$\Rightarrow\:\frac{{a}^{\mathrm{2}} {k}^{\mathrm{2}} }{{b}^{\mathrm{2}} }\:=\:\frac{\left({R}^{\mathrm{2}} −{a}^{\mathrm{2}} \right)\left({a}^{\mathrm{2}} −{b}^{\mathrm{2}} \right)}{{b}^{\mathrm{2}} } \\ $$$$\Rightarrow\:{a}^{\mathrm{2}} \left({R}−\mathrm{2}{r}+{b}\right)^{\mathrm{2}} =\left({a}^{\mathrm{2}} −{b}^{\mathrm{2}} \right)\left({R}^{\mathrm{2}} −{a}^{\mathrm{2}} \right) \\ $$$$\Rightarrow\:{b}^{\mathrm{2}} {R}^{\mathrm{2}} −\mathrm{2}{a}^{\mathrm{2}} \left(\mathrm{2}{r}−{b}\right){R} \\ $$$$\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:+{a}^{\mathrm{2}} \left(\mathrm{2}{r}−{b}\right)^{\mathrm{2}} +{a}^{\mathrm{4}} −{a}^{\mathrm{2}} {b}^{\mathrm{2}} \:=\:\mathrm{0} \\ $$$$\Rightarrow\:{b}^{\mathrm{2}} {R}^{\mathrm{2}} −\mathrm{2}{a}^{\mathrm{2}} \left(\mathrm{2}{r}−{b}\right){R}+\mathrm{4}{a}^{\mathrm{2}} {r}\left({r}−{b}\right)=\mathrm{0} \\ $$$$\Rightarrow\:{R}\:=\:\frac{{a}^{\mathrm{2}} \left(\mathrm{2}{r}−{b}\right)\pm{a}\sqrt{{a}^{\mathrm{2}} \left(\mathrm{2}{r}−{b}\right)^{\mathrm{2}} −\mathrm{4}{b}^{\mathrm{2}} {r}\left({r}−{b}\right)}}{{b}^{\mathrm{2}} } \\ $$$${R}=\:\frac{{a}^{\mathrm{2}} }{{b}^{\mathrm{2}} }\left\{\left(\mathrm{2}{r}−{b}\right)\pm\sqrt{\left(\mathrm{2}{r}−{b}\right)^{\mathrm{2}} −\frac{\mathrm{4}{b}^{\mathrm{2}} }{{a}^{\mathrm{2}} }{r}\left({r}−{b}\right)}\:\right\} \\ $$$${Its}\:{clear}\:{we}'{ll}\:{choose}\:+{ve}\:{sign} \\ $$$${for}\:{the}\:{circumcircle}\:{in}\:{diagram}. \\ $$$${The}\:−{ve}\:{one}\:{is}\:{for}\:{the}\:{circle}\:{that}'{s} \\ $$$${tangent}\:{to}\:{ellipse}\:{from}\:{within}\:{the} \\ $$$${small}\:{circle}\left({tangent}\:{still}\:{to}\:{it}\:{at}\:{A}\right). \\ $$ | ||
Commented by mr W last updated on 25/Jan/19 | ||
$${very}\:{fine}\:{sir}! \\ $$ | ||