Question and Answers Forum

All Questions      Topic List

Coordinate Geometry Questions

Previous in All Question      Next in All Question      

Previous in Coordinate Geometry      Next in Coordinate Geometry      

Question Number 53323 by ajfour last updated on 20/Jan/19

Answered by mr W last updated on 20/Jan/19

y=(x^2 /a) with a=1  A(0,h)  eqn. of big circle:  ay+(y−h)^2 =R^2   y^2 −(2h−a)y+(h^2 −R^2 )=0  Δ=(2h−a)^2 −4(h^2 −R^2 )=0  −4ah+a^2 +4R^2 =0  ⇒h=((a^2 +4R^2 )/(4a))  C(r,k)  k=h+(√((R+r)^2 −r^2 ))=h+(√(R(R+2r)))  x_P =r+r sin θ  y_P =k−r cos θ  y_P ′=((2x_P )/a)=tan θ  ⇒x_P =((a tan θ)/2)  ⇒2r(1+sin θ)=a tan θ  ⇒r=((a tan θ)/(2(1+sin θ)))    ...(ii)  ay_P =x_P ^2   ⇒a(k−r cos θ)=((a^2 tan^2  θ)/4)  ⇒4(k−r cos θ)=a tan^2  θ  ⇒4(((a^2 +4R^2 )/(4a))+(√(R(R+2r)))−r cos θ)=a tan^2  θ  ⇒1+4((R/a))^2 +4(√((R/a)((R/a)+((tan θ)/(1+sin θ)))))−((2 sin θ)/(1+sin θ))=tan^2  θ  ⇒4((R/a))^2 +4(√((R/a)((R/a)+((tan θ)/(1+sin θ)))))+((1−sin θ)/(1+sin θ))=tan^2  θ      ...(i)  ⇒θ=θ((R/a))....  ⇒r=.....    example:  R=2⇒θ=79.3441°⇒r=1.3402

$${y}=\frac{{x}^{\mathrm{2}} }{{a}}\:{with}\:{a}=\mathrm{1} \\ $$$${A}\left(\mathrm{0},{h}\right) \\ $$$${eqn}.\:{of}\:{big}\:{circle}: \\ $$$${ay}+\left({y}−{h}\right)^{\mathrm{2}} ={R}^{\mathrm{2}} \\ $$$${y}^{\mathrm{2}} −\left(\mathrm{2}{h}−{a}\right){y}+\left({h}^{\mathrm{2}} −{R}^{\mathrm{2}} \right)=\mathrm{0} \\ $$$$\Delta=\left(\mathrm{2}{h}−{a}\right)^{\mathrm{2}} −\mathrm{4}\left({h}^{\mathrm{2}} −{R}^{\mathrm{2}} \right)=\mathrm{0} \\ $$$$−\mathrm{4}{ah}+{a}^{\mathrm{2}} +\mathrm{4}{R}^{\mathrm{2}} =\mathrm{0} \\ $$$$\Rightarrow{h}=\frac{{a}^{\mathrm{2}} +\mathrm{4}{R}^{\mathrm{2}} }{\mathrm{4}{a}} \\ $$$${C}\left({r},{k}\right) \\ $$$${k}={h}+\sqrt{\left({R}+{r}\right)^{\mathrm{2}} −{r}^{\mathrm{2}} }={h}+\sqrt{{R}\left({R}+\mathrm{2}{r}\right)} \\ $$$${x}_{{P}} ={r}+{r}\:\mathrm{sin}\:\theta \\ $$$${y}_{{P}} ={k}−{r}\:\mathrm{cos}\:\theta \\ $$$${y}_{{P}} '=\frac{\mathrm{2}{x}_{{P}} }{{a}}=\mathrm{tan}\:\theta \\ $$$$\Rightarrow{x}_{{P}} =\frac{{a}\:\mathrm{tan}\:\theta}{\mathrm{2}} \\ $$$$\Rightarrow\mathrm{2}{r}\left(\mathrm{1}+\mathrm{sin}\:\theta\right)={a}\:\mathrm{tan}\:\theta \\ $$$$\Rightarrow{r}=\frac{{a}\:\mathrm{tan}\:\theta}{\mathrm{2}\left(\mathrm{1}+\mathrm{sin}\:\theta\right)}\:\:\:\:...\left({ii}\right) \\ $$$${ay}_{{P}} ={x}_{{P}} ^{\mathrm{2}} \\ $$$$\Rightarrow{a}\left({k}−{r}\:\mathrm{cos}\:\theta\right)=\frac{{a}^{\mathrm{2}} \mathrm{tan}^{\mathrm{2}} \:\theta}{\mathrm{4}} \\ $$$$\Rightarrow\mathrm{4}\left({k}−{r}\:\mathrm{cos}\:\theta\right)={a}\:\mathrm{tan}^{\mathrm{2}} \:\theta \\ $$$$\Rightarrow\mathrm{4}\left(\frac{{a}^{\mathrm{2}} +\mathrm{4}{R}^{\mathrm{2}} }{\mathrm{4}{a}}+\sqrt{{R}\left({R}+\mathrm{2}{r}\right)}−{r}\:\mathrm{cos}\:\theta\right)={a}\:\mathrm{tan}^{\mathrm{2}} \:\theta \\ $$$$\Rightarrow\mathrm{1}+\mathrm{4}\left(\frac{{R}}{{a}}\right)^{\mathrm{2}} +\mathrm{4}\sqrt{\frac{{R}}{{a}}\left(\frac{{R}}{{a}}+\frac{\mathrm{tan}\:\theta}{\mathrm{1}+\mathrm{sin}\:\theta}\right)}−\frac{\mathrm{2}\:\mathrm{sin}\:\theta}{\mathrm{1}+\mathrm{sin}\:\theta}=\mathrm{tan}^{\mathrm{2}} \:\theta \\ $$$$\Rightarrow\mathrm{4}\left(\frac{{R}}{{a}}\right)^{\mathrm{2}} +\mathrm{4}\sqrt{\frac{{R}}{{a}}\left(\frac{{R}}{{a}}+\frac{\mathrm{tan}\:\theta}{\mathrm{1}+\mathrm{sin}\:\theta}\right)}+\frac{\mathrm{1}−\mathrm{sin}\:\theta}{\mathrm{1}+\mathrm{sin}\:\theta}=\mathrm{tan}^{\mathrm{2}} \:\theta\:\:\:\:\:\:...\left({i}\right) \\ $$$$\Rightarrow\theta=\theta\left(\frac{{R}}{{a}}\right).... \\ $$$$\Rightarrow{r}=..... \\ $$$$ \\ $$$${example}: \\ $$$${R}=\mathrm{2}\Rightarrow\theta=\mathrm{79}.\mathrm{3441}°\Rightarrow{r}=\mathrm{1}.\mathrm{3402} \\ $$

Commented by ajfour last updated on 20/Jan/19

Thanks Sir, very lucent manner!

$${Thanks}\:{Sir},\:{very}\:{lucent}\:{manner}! \\ $$

Terms of Service

Privacy Policy

Contact: info@tinkutara.com