Question and Answers Forum

All Questions      Topic List

Geometry Questions

Previous in All Question      Next in All Question      

Previous in Geometry      Next in Geometry      

Question Number 53276 by ajfour last updated on 19/Jan/19

Commented by ajfour last updated on 19/Jan/19

Pink semicircle mounts a yellow   equilateral triangle of side a.  Find sides p and q of maximum  area rectangle inscribed within.

$${Pink}\:{semicircle}\:{mounts}\:{a}\:{yellow}\: \\ $$$${equilateral}\:{triangle}\:{of}\:{side}\:{a}. \\ $$$${Find}\:{sides}\:{p}\:{and}\:{q}\:{of}\:{maximum} \\ $$$${area}\:{rectangle}\:{inscribed}\:{within}. \\ $$

Answered by mr W last updated on 20/Jan/19

p=(1/2)(√(a^2 −q^2 ))+(((√3)a)/2)(1−(q/a))  A=pq=(q/2)[(√(a^2 −q^z ))+(√3)a(1−(q/a))]  A=(a^2 /2)[(√(1−λ^2 ))+(√3)(1−λ)]λ with λ=(q/a)  ((d(((2A)/a^2 )))/dλ)=0  (√(1−λ^2 ))+(√3)(1−λ)+λ[−(λ/(√(1−λ^2 )))−(√3)]=0  ⇒(√(3(1−λ^2 )))(1−2λ)=2λ^2 −1  ⇒λ=0.6006  ⇒A_(max) =0.4478a^2

$${p}=\frac{\mathrm{1}}{\mathrm{2}}\sqrt{{a}^{\mathrm{2}} −{q}^{\mathrm{2}} }+\frac{\sqrt{\mathrm{3}}{a}}{\mathrm{2}}\left(\mathrm{1}−\frac{{q}}{{a}}\right) \\ $$$${A}={pq}=\frac{{q}}{\mathrm{2}}\left[\sqrt{{a}^{\mathrm{2}} −{q}^{{z}} }+\sqrt{\mathrm{3}}{a}\left(\mathrm{1}−\frac{{q}}{{a}}\right)\right] \\ $$$${A}=\frac{{a}^{\mathrm{2}} }{\mathrm{2}}\left[\sqrt{\mathrm{1}−\lambda^{\mathrm{2}} }+\sqrt{\mathrm{3}}\left(\mathrm{1}−\lambda\right)\right]\lambda\:{with}\:\lambda=\frac{{q}}{{a}} \\ $$$$\frac{{d}\left(\frac{\mathrm{2}{A}}{{a}^{\mathrm{2}} }\right)}{{d}\lambda}=\mathrm{0} \\ $$$$\sqrt{\mathrm{1}−\lambda^{\mathrm{2}} }+\sqrt{\mathrm{3}}\left(\mathrm{1}−\lambda\right)+\lambda\left[−\frac{\lambda}{\sqrt{\mathrm{1}−\lambda^{\mathrm{2}} }}−\sqrt{\mathrm{3}}\right]=\mathrm{0} \\ $$$$\Rightarrow\sqrt{\mathrm{3}\left(\mathrm{1}−\lambda^{\mathrm{2}} \right)}\left(\mathrm{1}−\mathrm{2}\lambda\right)=\mathrm{2}\lambda^{\mathrm{2}} −\mathrm{1} \\ $$$$\Rightarrow\lambda=\mathrm{0}.\mathrm{6006} \\ $$$$\Rightarrow{A}_{{max}} =\mathrm{0}.\mathrm{4478}{a}^{\mathrm{2}} \\ $$

Commented by ajfour last updated on 20/Jan/19

Thanks Sir, really precise & excellent!

$${Thanks}\:{Sir},\:{really}\:{precise}\:\&\:{excellent}! \\ $$

Terms of Service

Privacy Policy

Contact: info@tinkutara.com