Question and Answers Forum

All Questions      Topic List

Mechanics Questions

Previous in All Question      Next in All Question      

Previous in Mechanics      Next in Mechanics      

Question Number 53273 by ajfour last updated on 19/Jan/19

Commented by ajfour last updated on 19/Jan/19

If system is in equilibrium, find θ.  rod is L shaped and uniform.

$${If}\:{system}\:{is}\:{in}\:{equilibrium},\:{find}\:\theta. \\ $$$${rod}\:{is}\:{L}\:{shaped}\:{and}\:{uniform}. \\ $$

Answered by mr W last updated on 19/Jan/19

((aMg)/(a+b))×((a sin θ)/2)+((bMg)/(a+b))×(a sin θ−((b cos θ)/2))+mg(a sin θ−b cos θ)=0  (a/(a+b))×a tan θ+(b/(a+b))×(2a tan θ−b)+((2m)/M)(a tan θ−b)=0  (((a^2 +2ab)/(a+b))+((2ma)/M)) tan θ=(b^2 /(a+b))+((2mb)/M)  ⇒θ=tan^(−1) ((b[bM+2(a+b)m])/(a[(a+2b)M+2(a+b)m]))

$$\frac{{aMg}}{{a}+{b}}×\frac{{a}\:\mathrm{sin}\:\theta}{\mathrm{2}}+\frac{{bMg}}{{a}+{b}}×\left({a}\:\mathrm{sin}\:\theta−\frac{{b}\:\mathrm{cos}\:\theta}{\mathrm{2}}\right)+{mg}\left({a}\:\mathrm{sin}\:\theta−{b}\:\mathrm{cos}\:\theta\right)=\mathrm{0} \\ $$$$\frac{{a}}{{a}+{b}}×{a}\:\mathrm{tan}\:\theta+\frac{{b}}{{a}+{b}}×\left(\mathrm{2}{a}\:\mathrm{tan}\:\theta−{b}\right)+\frac{\mathrm{2}{m}}{{M}}\left({a}\:\mathrm{tan}\:\theta−{b}\right)=\mathrm{0} \\ $$$$\left(\frac{{a}^{\mathrm{2}} +\mathrm{2}{ab}}{{a}+{b}}+\frac{\mathrm{2}{ma}}{{M}}\right)\:\mathrm{tan}\:\theta=\frac{{b}^{\mathrm{2}} }{{a}+{b}}+\frac{\mathrm{2}{mb}}{{M}} \\ $$$$\Rightarrow\theta=\mathrm{tan}^{−\mathrm{1}} \frac{{b}\left[{bM}+\mathrm{2}\left({a}+{b}\right){m}\right]}{{a}\left[\left({a}+\mathrm{2}{b}\right){M}+\mathrm{2}\left({a}+{b}\right){m}\right]} \\ $$

Commented by ajfour last updated on 20/Jan/19

Thank you Sir, answer is presented  the best way.

$${Thank}\:{you}\:{Sir},\:{answer}\:{is}\:{presented} \\ $$$${the}\:{best}\:{way}. \\ $$

Terms of Service

Privacy Policy

Contact: info@tinkutara.com