Question Number 53273 by ajfour last updated on 19/Jan/19 | ||
Commented by ajfour last updated on 19/Jan/19 | ||
$${If}\:{system}\:{is}\:{in}\:{equilibrium},\:{find}\:\theta. \\ $$$${rod}\:{is}\:{L}\:{shaped}\:{and}\:{uniform}. \\ $$ | ||
Answered by mr W last updated on 19/Jan/19 | ||
$$\frac{{aMg}}{{a}+{b}}×\frac{{a}\:\mathrm{sin}\:\theta}{\mathrm{2}}+\frac{{bMg}}{{a}+{b}}×\left({a}\:\mathrm{sin}\:\theta−\frac{{b}\:\mathrm{cos}\:\theta}{\mathrm{2}}\right)+{mg}\left({a}\:\mathrm{sin}\:\theta−{b}\:\mathrm{cos}\:\theta\right)=\mathrm{0} \\ $$$$\frac{{a}}{{a}+{b}}×{a}\:\mathrm{tan}\:\theta+\frac{{b}}{{a}+{b}}×\left(\mathrm{2}{a}\:\mathrm{tan}\:\theta−{b}\right)+\frac{\mathrm{2}{m}}{{M}}\left({a}\:\mathrm{tan}\:\theta−{b}\right)=\mathrm{0} \\ $$$$\left(\frac{{a}^{\mathrm{2}} +\mathrm{2}{ab}}{{a}+{b}}+\frac{\mathrm{2}{ma}}{{M}}\right)\:\mathrm{tan}\:\theta=\frac{{b}^{\mathrm{2}} }{{a}+{b}}+\frac{\mathrm{2}{mb}}{{M}} \\ $$$$\Rightarrow\theta=\mathrm{tan}^{−\mathrm{1}} \frac{{b}\left[{bM}+\mathrm{2}\left({a}+{b}\right){m}\right]}{{a}\left[\left({a}+\mathrm{2}{b}\right){M}+\mathrm{2}\left({a}+{b}\right){m}\right]} \\ $$ | ||
Commented by ajfour last updated on 20/Jan/19 | ||
$${Thank}\:{you}\:{Sir},\:{answer}\:{is}\:{presented} \\ $$$${the}\:{best}\:{way}. \\ $$ | ||