Question and Answers Forum

All Questions      Topic List

Others Questions

Previous in All Question      Next in All Question      

Previous in Others      Next in Others      

Question Number 52818 by Tawa1 last updated on 13/Jan/19

Answered by tanmay.chaudhury50@gmail.com last updated on 13/Jan/19

V_(cart) =4i  (V^ )_(cart) ^(stone) =velocity of stone w.r.t man(cart)  V_(cart) ^(stone) =V_(earth) ^(stone) −V_(earth) ^(cart)   6cos30^o k+6sin30^0 j+4i=V_(earth) ^(stone)   m_(stone) ×V_(earth) ^(stone) =(m_(stone) +m_(object) )V_(earth) ^(combined)   at highest point V_z  component=0 for stone  V_(earth) ^(combined)  at highest point=((0×k+6sin30^o j+4i)/2)  =((0×k+3j+4i)/2)=2i+(3/2)j+0×k  speed combined=∣V_(earth) ^(combined) ∣=(√(2^2 +((3/2))^2 )) =(√(4+2.25)) =2.5m/sec      b)v=(√(gl))   l=(v^2 /g)=((6.25)/(9.8))=0.64meter

$${V}_{{cart}} =\mathrm{4}{i} \\ $$$$\left({V}^{} \right)_{{cart}} ^{{stone}} ={velocity}\:{of}\:{stone}\:{w}.{r}.{t}\:{man}\left({cart}\right) \\ $$$${V}_{{cart}} ^{{stone}} ={V}_{{earth}} ^{{stone}} −{V}_{{earth}} ^{{cart}} \\ $$$$\mathrm{6}{cos}\mathrm{30}^{{o}} {k}+\mathrm{6}{sin}\mathrm{30}^{\mathrm{0}} {j}+\mathrm{4}{i}={V}_{{earth}} ^{{stone}} \\ $$$${m}_{{stone}} ×{V}_{{earth}} ^{{stone}} =\left({m}_{{stone}} +{m}_{{object}} \right){V}_{{earth}} ^{{combined}} \\ $$$${at}\:{highest}\:{point}\:{V}_{{z}} \:{component}=\mathrm{0}\:{for}\:{stone} \\ $$$${V}_{{earth}} ^{{combined}} \:{at}\:{highest}\:{point}=\frac{\mathrm{0}×{k}+\mathrm{6}{sin}\mathrm{30}^{{o}} {j}+\mathrm{4}{i}}{\mathrm{2}} \\ $$$$=\frac{\mathrm{0}×{k}+\mathrm{3}{j}+\mathrm{4}{i}}{\mathrm{2}}=\mathrm{2}{i}+\frac{\mathrm{3}}{\mathrm{2}}{j}+\mathrm{0}×{k} \\ $$$${speed}\:{combined}=\mid{V}_{{earth}} ^{{combined}} \mid=\sqrt{\mathrm{2}^{\mathrm{2}} +\left(\frac{\mathrm{3}}{\mathrm{2}}\right)^{\mathrm{2}} }\:=\sqrt{\mathrm{4}+\mathrm{2}.\mathrm{25}}\:=\mathrm{2}.\mathrm{5}{m}/{sec} \\ $$$$ \\ $$$$ \\ $$$$\left.{b}\right){v}=\sqrt{{gl}}\:\:\:{l}=\frac{{v}^{\mathrm{2}} }{{g}}=\frac{\mathrm{6}.\mathrm{25}}{\mathrm{9}.\mathrm{8}}=\mathrm{0}.\mathrm{64}{meter} \\ $$

Commented by Tawa1 last updated on 13/Jan/19

God bless you sir

$$\mathrm{God}\:\mathrm{bless}\:\mathrm{you}\:\mathrm{sir} \\ $$

Commented by tanmay.chaudhury50@gmail.com last updated on 13/Jan/19

is my answer correct...

$${is}\:{my}\:{answer}\:{correct}... \\ $$

Terms of Service

Privacy Policy

Contact: info@tinkutara.com