Question and Answers Forum

All Questions      Topic List

Mechanics Questions

Previous in All Question      Next in All Question      

Previous in Mechanics      Next in Mechanics      

Question Number 52787 by peter frank last updated on 13/Jan/19

Answered by tanmay.chaudhury50@gmail.com last updated on 13/Jan/19

flow of fluid in pipe formula  (dV/dt)=((△p×πr^4 )/(8ηl))=((△p)/((8ηl)/(πr^4 )))  compare it with flow of current in resistance..  here current i→(dV/dt)  potential difference→△p  resistance→((8ηl)/(πr^4 ))  so cappilary joined in series is equivalant  to resistance in series connection  (R_(eq) =R_1 +R_2 +R_3 +... Resistance in series)  same way  equivalant viscous resitance  ((8ηl_1 )/(πr_1 ^4 ))+((8ηl_2 )/(πr_2 ^4 ))+((8ηl_3 )/(πr_3 ^4 ))  now use formula   current=((p.d)/(resistance))=(V/(R_1 +R_2 +R_3 ))=i  similar way  rate of flow (dV/dt)=((△p)/(((8ηl_1 )/(πr_1 ^4 ))+((8ηl_2 )/(πr_2 ^4 +))+((8ηl_3 )/(πr_3 ^4 ))))=((π△p)/(8η((l_1 /r_1 ^4 )+(l_2 /r_2 ^4 )+(l_3 /r_3 ^4 ))))  so answer is  (dV/dt)=((πp)/(8η((l_1 /r_1 ^4 )+(l_2 /r_2 ^4 )+(l_3 /r_3 ^4 ))))   [given △p=p]

$${flow}\:{of}\:{fluid}\:{in}\:{pipe}\:{formula} \\ $$$$\frac{{dV}}{{dt}}=\frac{\bigtriangleup{p}×\pi{r}^{\mathrm{4}} }{\mathrm{8}\eta{l}}=\frac{\bigtriangleup{p}}{\frac{\mathrm{8}\eta{l}}{\pi{r}^{\mathrm{4}} }} \\ $$$${compare}\:{it}\:{with}\:{flow}\:{of}\:{current}\:{in}\:{resistance}.. \\ $$$${here}\:{current}\:{i}\rightarrow\frac{{dV}}{{dt}} \\ $$$${potential}\:{difference}\rightarrow\bigtriangleup{p} \\ $$$${resistance}\rightarrow\frac{\mathrm{8}\eta{l}}{\pi{r}^{\mathrm{4}} } \\ $$$${so}\:{cappilary}\:{joined}\:{in}\:{series}\:{is}\:{equivalant} \\ $$$${to}\:{resistance}\:{in}\:{series}\:{connection} \\ $$$$\left({R}_{{eq}} ={R}_{\mathrm{1}} +{R}_{\mathrm{2}} +{R}_{\mathrm{3}} +...\:{Resistance}\:{in}\:{series}\right) \\ $$$${same}\:{way}\:\:{equivalant}\:{viscous}\:{resitance} \\ $$$$\frac{\mathrm{8}\eta{l}_{\mathrm{1}} }{\pi{r}_{\mathrm{1}} ^{\mathrm{4}} }+\frac{\mathrm{8}\eta{l}_{\mathrm{2}} }{\pi{r}_{\mathrm{2}} ^{\mathrm{4}} }+\frac{\mathrm{8}\eta{l}_{\mathrm{3}} }{\pi{r}_{\mathrm{3}} ^{\mathrm{4}} } \\ $$$${now}\:{use}\:{formula}\:\:\:{current}=\frac{{p}.{d}}{{resistance}}=\frac{{V}}{{R}_{\mathrm{1}} +{R}_{\mathrm{2}} +{R}_{\mathrm{3}} }={i} \\ $$$${similar}\:{way} \\ $$$${rate}\:{of}\:{flow}\:\frac{{dV}}{{dt}}=\frac{\bigtriangleup{p}}{\frac{\mathrm{8}\eta{l}_{\mathrm{1}} }{\pi{r}_{\mathrm{1}} ^{\mathrm{4}} }+\frac{\mathrm{8}\eta{l}_{\mathrm{2}} }{\pi{r}_{\mathrm{2}} ^{\mathrm{4}} +}+\frac{\mathrm{8}\eta{l}_{\mathrm{3}} }{\pi{r}_{\mathrm{3}} ^{\mathrm{4}} }}=\frac{\pi\bigtriangleup{p}}{\mathrm{8}\eta\left(\frac{{l}_{\mathrm{1}} }{{r}_{\mathrm{1}} ^{\mathrm{4}} }+\frac{{l}_{\mathrm{2}} }{{r}_{\mathrm{2}} ^{\mathrm{4}} }+\frac{{l}_{\mathrm{3}} }{{r}_{\mathrm{3}} ^{\mathrm{4}} }\right)} \\ $$$${so}\:{answer}\:{is} \\ $$$$\frac{{dV}}{{dt}}=\frac{\pi{p}}{\mathrm{8}\eta\left(\frac{{l}_{\mathrm{1}} }{{r}_{\mathrm{1}} ^{\mathrm{4}} }+\frac{{l}_{\mathrm{2}} }{{r}_{\mathrm{2}} ^{\mathrm{4}} }+\frac{{l}_{\mathrm{3}} }{{r}_{\mathrm{3}} ^{\mathrm{4}} }\right)}\:\:\:\left[{given}\:\bigtriangleup{p}={p}\right] \\ $$

Commented by peter frank last updated on 13/Jan/19

thanks

$${thanks} \\ $$

Answered by peter frank last updated on 13/Jan/19

Terms of Service

Privacy Policy

Contact: info@tinkutara.com