Question and Answers Forum

All Questions      Topic List

Arithmetic Questions

Previous in All Question      Next in All Question      

Previous in Arithmetic      Next in Arithmetic      

Question Number 48871 by peter frank last updated on 29/Nov/18

Commented by maxmathsup by imad last updated on 01/Jan/19

2) we have x^2 −2x−3 =x^2 +x−3x−3 =x(x+1)−3(x+1)=(x+1)(x−3)⇒  f(x)=((x(x+1))/((x+1)(x−3))) and for x≠−1 f(x)=(x/(x−3))  but remember that  D_f =R−{−1,3}  so  lim_(x→−∞) f(x)=1  ,lim_(x→+∞ )   f(x)=1  and lim_(x→3^− )   f(x)=−∞   lim_(x→3^+ )    f(x)=+∞   lim_(x→−1) f(x)=(1/4)  we have f(x) =((x−3+3)/(x−3)) =1+(3/(x−3)) ⇒f^′ (x)=−(3/((x−3)^2 ))<0 ⇒f is decreasing on  D_f   x                    −∞                    −1                        3                   +∞  f^′ (x)                              −          ∣∣          −           ∣∣         −  f(x)                    1    decr.           −∞∣∣+∞       decr.      −∞ ∣∣     decr.    1

$$\left.\mathrm{2}\right)\:{we}\:{have}\:{x}^{\mathrm{2}} −\mathrm{2}{x}−\mathrm{3}\:={x}^{\mathrm{2}} +{x}−\mathrm{3}{x}−\mathrm{3}\:={x}\left({x}+\mathrm{1}\right)−\mathrm{3}\left({x}+\mathrm{1}\right)=\left({x}+\mathrm{1}\right)\left({x}−\mathrm{3}\right)\Rightarrow \\ $$$${f}\left({x}\right)=\frac{{x}\left({x}+\mathrm{1}\right)}{\left({x}+\mathrm{1}\right)\left({x}−\mathrm{3}\right)}\:{and}\:{for}\:{x}\neq−\mathrm{1}\:{f}\left({x}\right)=\frac{{x}}{{x}−\mathrm{3}}\:\:{but}\:{remember}\:{that} \\ $$$${D}_{{f}} ={R}−\left\{−\mathrm{1},\mathrm{3}\right\}\:\:{so} \\ $$$${lim}_{{x}\rightarrow−\infty} {f}\left({x}\right)=\mathrm{1}\:\:,{lim}_{{x}\rightarrow+\infty\:} \:\:{f}\left({x}\right)=\mathrm{1}\:\:{and}\:{lim}_{{x}\rightarrow\mathrm{3}^{−} } \:\:{f}\left({x}\right)=−\infty\: \\ $$$${lim}_{{x}\rightarrow\mathrm{3}^{+} } \:\:\:{f}\left({x}\right)=+\infty\:\:\:{lim}_{{x}\rightarrow−\mathrm{1}} {f}\left({x}\right)=\frac{\mathrm{1}}{\mathrm{4}} \\ $$$${we}\:{have}\:{f}\left({x}\right)\:=\frac{{x}−\mathrm{3}+\mathrm{3}}{{x}−\mathrm{3}}\:=\mathrm{1}+\frac{\mathrm{3}}{{x}−\mathrm{3}}\:\Rightarrow{f}^{'} \left({x}\right)=−\frac{\mathrm{3}}{\left({x}−\mathrm{3}\right)^{\mathrm{2}} }<\mathrm{0}\:\Rightarrow{f}\:{is}\:{decreasing}\:{on} \\ $$$${D}_{{f}} \\ $$$${x}\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:−\infty\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:−\mathrm{1}\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\mathrm{3}\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:+\infty \\ $$$${f}^{'} \left({x}\right)\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:−\:\:\:\:\:\:\:\:\:\:\mid\mid\:\:\:\:\:\:\:\:\:\:−\:\:\:\:\:\:\:\:\:\:\:\mid\mid\:\:\:\:\:\:\:\:\:− \\ $$$${f}\left({x}\right)\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\mathrm{1}\:\:\:\:{decr}.\:\:\:\:\:\:\:\:\:\:\:−\infty\mid\mid+\infty\:\:\:\:\:\:\:{decr}.\:\:\:\:\:\:−\infty\:\mid\mid\:\:\:\:\:{decr}.\:\:\:\:\mathrm{1} \\ $$

Answered by kaivan.ahmadi last updated on 30/Nov/18

lim_(x→∞) f(x)=1⇒y=1 is horizontal  asympote  x^2 −2x−3=0⇒(x−3)(x+1)=0⇒  x=3  x=−1  but since x=−1 is root of x^2 +x=0  is not vertical asympote  so x=3 is vertical asympote

$$\mathrm{lim}_{\mathrm{x}\rightarrow\infty} \mathrm{f}\left(\mathrm{x}\right)=\mathrm{1}\Rightarrow\mathrm{y}=\mathrm{1}\:\mathrm{is}\:\mathrm{horizontal} \\ $$$$\mathrm{asympote} \\ $$$$\mathrm{x}^{\mathrm{2}} −\mathrm{2x}−\mathrm{3}=\mathrm{0}\Rightarrow\left(\mathrm{x}−\mathrm{3}\right)\left(\mathrm{x}+\mathrm{1}\right)=\mathrm{0}\Rightarrow \\ $$$$\mathrm{x}=\mathrm{3} \\ $$$$\mathrm{x}=−\mathrm{1} \\ $$$$\mathrm{but}\:\mathrm{since}\:\mathrm{x}=−\mathrm{1}\:\mathrm{is}\:\mathrm{root}\:\mathrm{of}\:\mathrm{x}^{\mathrm{2}} +\mathrm{x}=\mathrm{0} \\ $$$$\mathrm{is}\:\mathrm{not}\:\mathrm{vertical}\:\mathrm{asympote} \\ $$$$\mathrm{so}\:\mathrm{x}=\mathrm{3}\:\mathrm{is}\:\mathrm{vertical}\:\mathrm{asympote} \\ $$

Answered by kaivan.ahmadi last updated on 30/Nov/18

D_f =R−{−1,3}  R_f =R−{1}

$$\mathrm{D}_{\mathrm{f}} =\mathrm{R}−\left\{−\mathrm{1},\mathrm{3}\right\} \\ $$$$\mathrm{R}_{\mathrm{f}} =\mathrm{R}−\left\{\mathrm{1}\right\} \\ $$

Answered by kaivan.ahmadi last updated on 30/Nov/18

2)f(x_1 )=f(x_2 )⇒  ((x_1 −3)/(x_1 +2))=((x_2 −3)/(x_2 +2))⇒  x_1 x_2 +2x_1 −3x_2 −6=x_1 x_2 −3x_1 +2x_2 −6  5x_1 =5x_2 ⇒x_1 =x_2 ⇒f   is  1−1

$$\left.\mathrm{2}\right)\mathrm{f}\left(\mathrm{x}_{\mathrm{1}} \right)=\mathrm{f}\left(\mathrm{x}_{\mathrm{2}} \right)\Rightarrow \\ $$$$\frac{\mathrm{x}_{\mathrm{1}} −\mathrm{3}}{\mathrm{x}_{\mathrm{1}} +\mathrm{2}}=\frac{\mathrm{x}_{\mathrm{2}} −\mathrm{3}}{\mathrm{x}_{\mathrm{2}} +\mathrm{2}}\Rightarrow \\ $$$$\mathrm{x}_{\mathrm{1}} \mathrm{x}_{\mathrm{2}} +\mathrm{2x}_{\mathrm{1}} −\mathrm{3x}_{\mathrm{2}} −\mathrm{6}=\mathrm{x}_{\mathrm{1}} \mathrm{x}_{\mathrm{2}} −\mathrm{3x}_{\mathrm{1}} +\mathrm{2x}_{\mathrm{2}} −\mathrm{6} \\ $$$$\mathrm{5x}_{\mathrm{1}} =\mathrm{5x}_{\mathrm{2}} \Rightarrow\mathrm{x}_{\mathrm{1}} =\mathrm{x}_{\mathrm{2}} \Rightarrow\mathrm{f}\:\:\:\mathrm{is}\:\:\mathrm{1}−\mathrm{1} \\ $$

Terms of Service

Privacy Policy

Contact: info@tinkutara.com