Question and Answers Forum

All Questions      Topic List

Geometry Questions

Previous in All Question      Next in All Question      

Previous in Geometry      Next in Geometry      

Question Number 48522 by ajfour last updated on 25/Nov/18

Commented by ajfour last updated on 25/Nov/18

A regular hexagonal pyramid  with base edge a and altitude h.  Find the area of a section that  passes through midpoints P, Q  of sides AB and CD and also  through M , the midpoint of  altitude.

$${A}\:{regular}\:{hexagonal}\:{pyramid} \\ $$$${with}\:{base}\:{edge}\:\boldsymbol{{a}}\:{and}\:{altitude}\:\boldsymbol{{h}}. \\ $$$${Find}\:{the}\:{area}\:{of}\:{a}\:{section}\:{that} \\ $$$${passes}\:{through}\:{midpoints}\:{P},\:{Q} \\ $$$${of}\:{sides}\:{AB}\:{and}\:{CD}\:{and}\:{also} \\ $$$${through}\:{M}\:,\:{the}\:{midpoint}\:{of} \\ $$$${altitude}. \\ $$

Answered by mr W last updated on 25/Nov/18

Commented by mr W last updated on 25/Nov/18

AD=2a  b_1 =PQ=(a+2a)/2=3a/2  b_2 =UR=AD/2=a  c=(√(((√3)a/4)^2 +(h/2)^2 ))=((√(3a^2 +4h^2 )))/4  (e/(f−h/2))=(((√3)a/4)/(h/2))  (e/(h−f))=(((√3)a/2)/h)  ⇒f−h/2=h−f  ⇒f=3h/4  b_3 =ST  (b_3 /a)=((h−f)/h)=1/4  ⇒b_3 =a/4  ((d+c)/c)=(f/(h/2))=(3/2)  (d/c)=(1/2)  ⇒d=c/2=((√(3a^2 +4h^2 )))/8  Area of PQRSTUP=A  A=(b_1 +b_2 )c/2+(b_2 +b_3 )d/2=[b_1 c+b_2 (c+d)+b_3 d]/2  =(1/2)[((3a)/2)×((√(3a^2 +4h^2 ))/4)+a×((3(√(3a^2 +4h^2 )))/8)+(a/4)×((√(3a^2 +4h^2 ))/8)]  ⇒A=((25a(√(3a^2 +4h^2 )))/(64))

$${AD}=\mathrm{2}{a} \\ $$$${b}_{\mathrm{1}} ={PQ}=\left({a}+\mathrm{2}{a}\right)/\mathrm{2}=\mathrm{3}{a}/\mathrm{2} \\ $$$${b}_{\mathrm{2}} ={UR}={AD}/\mathrm{2}={a} \\ $$$${c}=\sqrt{\left(\sqrt{\mathrm{3}}{a}/\mathrm{4}\right)^{\mathrm{2}} +\left({h}/\mathrm{2}\right)^{\mathrm{2}} }=\left(\sqrt{\mathrm{3}{a}^{\mathrm{2}} +\mathrm{4}{h}^{\mathrm{2}} }\right)/\mathrm{4} \\ $$$$\frac{{e}}{{f}−{h}/\mathrm{2}}=\frac{\sqrt{\mathrm{3}}{a}/\mathrm{4}}{{h}/\mathrm{2}} \\ $$$$\frac{{e}}{{h}−{f}}=\frac{\sqrt{\mathrm{3}}{a}/\mathrm{2}}{{h}} \\ $$$$\Rightarrow{f}−{h}/\mathrm{2}={h}−{f} \\ $$$$\Rightarrow{f}=\mathrm{3}{h}/\mathrm{4} \\ $$$${b}_{\mathrm{3}} ={ST} \\ $$$$\frac{{b}_{\mathrm{3}} }{{a}}=\frac{{h}−{f}}{{h}}=\mathrm{1}/\mathrm{4} \\ $$$$\Rightarrow{b}_{\mathrm{3}} ={a}/\mathrm{4} \\ $$$$\frac{{d}+{c}}{{c}}=\frac{{f}}{{h}/\mathrm{2}}=\frac{\mathrm{3}}{\mathrm{2}} \\ $$$$\frac{{d}}{{c}}=\frac{\mathrm{1}}{\mathrm{2}} \\ $$$$\Rightarrow{d}={c}/\mathrm{2}=\left(\sqrt{\mathrm{3}{a}^{\mathrm{2}} +\mathrm{4}{h}^{\mathrm{2}} }\right)/\mathrm{8} \\ $$$${Area}\:{of}\:{PQRSTUP}={A} \\ $$$${A}=\left({b}_{\mathrm{1}} +{b}_{\mathrm{2}} \right){c}/\mathrm{2}+\left({b}_{\mathrm{2}} +{b}_{\mathrm{3}} \right){d}/\mathrm{2}=\left[{b}_{\mathrm{1}} {c}+{b}_{\mathrm{2}} \left({c}+{d}\right)+{b}_{\mathrm{3}} {d}\right]/\mathrm{2} \\ $$$$=\frac{\mathrm{1}}{\mathrm{2}}\left[\frac{\mathrm{3}{a}}{\mathrm{2}}×\frac{\sqrt{\mathrm{3}{a}^{\mathrm{2}} +\mathrm{4}{h}^{\mathrm{2}} }}{\mathrm{4}}+{a}×\frac{\mathrm{3}\sqrt{\mathrm{3}{a}^{\mathrm{2}} +\mathrm{4}{h}^{\mathrm{2}} }}{\mathrm{8}}+\frac{{a}}{\mathrm{4}}×\frac{\sqrt{\mathrm{3}{a}^{\mathrm{2}} +\mathrm{4}{h}^{\mathrm{2}} }}{\mathrm{8}}\right] \\ $$$$\Rightarrow\boldsymbol{{A}}=\frac{\mathrm{25}\boldsymbol{{a}}\sqrt{\mathrm{3}\boldsymbol{{a}}^{\mathrm{2}} +\mathrm{4}\boldsymbol{{h}}^{\mathrm{2}} }}{\mathrm{64}} \\ $$

Commented by ajfour last updated on 25/Nov/18

excellent Sir, but answer is bit  different..

$${excellent}\:{Sir},\:{but}\:{answer}\:{is}\:{bit} \\ $$$${different}.. \\ $$

Commented by mr W last updated on 25/Nov/18

I made a little mistake, now it′s fixed.

$${I}\:{made}\:{a}\:{little}\:{mistake},\:{now}\:{it}'{s}\:{fixed}. \\ $$

Commented by ajfour last updated on 25/Nov/18

Really Correct now, and beyond  all admiration and praise Sir;   (b_3 /a) = ((h−f)/h)   (please help; how ?)

$${Really}\:{Correct}\:{now},\:{and}\:{beyond} \\ $$$${all}\:{admiration}\:{and}\:{praise}\:{Sir};\: \\ $$$$\frac{{b}_{\mathrm{3}} }{{a}}\:=\:\frac{{h}−{f}}{{h}}\:\:\:\left({please}\:{help};\:{how}\:?\right) \\ $$

Commented by mr W last updated on 26/Nov/18

S′=midpoint of S and T  E′=midpoint of E and F  ((ST)/(EF))=((VS′)/(VE′))=((h−f)/h)  ⇒(b_3 /a)=((h−f)/h)

$${S}'={midpoint}\:{of}\:{S}\:{and}\:{T} \\ $$$${E}'={midpoint}\:{of}\:{E}\:{and}\:{F} \\ $$$$\frac{{ST}}{{EF}}=\frac{{VS}'}{{VE}'}=\frac{{h}−{f}}{{h}} \\ $$$$\Rightarrow\frac{{b}_{\mathrm{3}} }{{a}}=\frac{{h}−{f}}{{h}} \\ $$

Terms of Service

Privacy Policy

Contact: info@tinkutara.com