Question and Answers Forum

All Questions      Topic List

Geometry Questions

Previous in All Question      Next in All Question      

Previous in Geometry      Next in Geometry      

Question Number 48388 by Tawa1 last updated on 23/Nov/18

Commented by Tawa1 last updated on 23/Nov/18

Find the Area of the triangle

$$\mathrm{Find}\:\mathrm{the}\:\mathrm{Area}\:\mathrm{of}\:\mathrm{the}\:\mathrm{triangle} \\ $$

Answered by mr W last updated on 23/Nov/18

CB=((∣5×1−5×3∣)/(√(1^2 +3^2 )))=(√(10))  OC=(√(5^2 +5^2 ))=5(√2)  OB=(√(50−10))=2(√(10))  or  tan ∠COB=(((5/5)−(1/3))/(1+((5×1)/(5×3))))=((10)/(20))=(1/2)  OB=((CB)/(tan ∠COB))=2(√(10))  tan ∠AOB=((2−(1/3))/(1+((2×1)/3)))=(5/5)=1  AB=OB tan ∠AOB=2(√(10))  Area of triangle =((OB×AB)/2)=((2^2 ×10)/2)=20

$${CB}=\frac{\mid\mathrm{5}×\mathrm{1}−\mathrm{5}×\mathrm{3}\mid}{\sqrt{\mathrm{1}^{\mathrm{2}} +\mathrm{3}^{\mathrm{2}} }}=\sqrt{\mathrm{10}} \\ $$$${OC}=\sqrt{\mathrm{5}^{\mathrm{2}} +\mathrm{5}^{\mathrm{2}} }=\mathrm{5}\sqrt{\mathrm{2}} \\ $$$${OB}=\sqrt{\mathrm{50}−\mathrm{10}}=\mathrm{2}\sqrt{\mathrm{10}} \\ $$$${or} \\ $$$$\mathrm{tan}\:\angle{COB}=\frac{\frac{\mathrm{5}}{\mathrm{5}}−\frac{\mathrm{1}}{\mathrm{3}}}{\mathrm{1}+\frac{\mathrm{5}×\mathrm{1}}{\mathrm{5}×\mathrm{3}}}=\frac{\mathrm{10}}{\mathrm{20}}=\frac{\mathrm{1}}{\mathrm{2}} \\ $$$$\mathrm{O}{B}=\frac{{CB}}{\mathrm{tan}\:\angle{COB}}=\mathrm{2}\sqrt{\mathrm{10}} \\ $$$$\mathrm{tan}\:\angle{AOB}=\frac{\mathrm{2}−\frac{\mathrm{1}}{\mathrm{3}}}{\mathrm{1}+\frac{\mathrm{2}×\mathrm{1}}{\mathrm{3}}}=\frac{\mathrm{5}}{\mathrm{5}}=\mathrm{1} \\ $$$${AB}={OB}\:\mathrm{tan}\:\angle{AOB}=\mathrm{2}\sqrt{\mathrm{10}} \\ $$$${Area}\:{of}\:{triangle}\:=\frac{{OB}×{AB}}{\mathrm{2}}=\frac{\mathrm{2}^{\mathrm{2}} ×\mathrm{10}}{\mathrm{2}}=\mathrm{20} \\ $$

Commented by Tawa1 last updated on 24/Nov/18

God bless you sir

$$\mathrm{God}\:\mathrm{bless}\:\mathrm{you}\:\mathrm{sir} \\ $$

Answered by tanmay.chaudhury50@gmail.com last updated on 23/Nov/18

eqn AB (y−5)=−3(x−5)  y−5+3x−15=0  y+3x=20  point  A intersection between y+3x=20 andy=2x  2x+3x=20   x=4   so y=8  A(4,8)  B is the intersectiin between y=(x/3)  and y+3x=20  (x/3)+3x=20   x=6  y=2  so A(4,8)  B(6,2)   O(0,0)  area of OAB  (1/2)[x_1 (y_2 −y_3 )+x_2 (y_3 −y_1 )+x_3 (y_1 −y_2 )]  =(1/2)[4(2−0)+6(0−8)+0(8−2)]  =(1/2)[−40]  so area is 20 unit...

$${eqn}\:{AB}\:\left({y}−\mathrm{5}\right)=−\mathrm{3}\left({x}−\mathrm{5}\right) \\ $$$${y}−\mathrm{5}+\mathrm{3}{x}−\mathrm{15}=\mathrm{0} \\ $$$${y}+\mathrm{3}{x}=\mathrm{20} \\ $$$${point}\:\:{A}\:{intersection}\:{between}\:{y}+\mathrm{3}{x}=\mathrm{20}\:{andy}=\mathrm{2}{x} \\ $$$$\mathrm{2}{x}+\mathrm{3}{x}=\mathrm{20}\:\:\:{x}=\mathrm{4}\:\:\:{so}\:{y}=\mathrm{8}\:\:{A}\left(\mathrm{4},\mathrm{8}\right) \\ $$$${B}\:{is}\:{the}\:{intersectiin}\:{between}\:{y}=\frac{{x}}{\mathrm{3}}\:\:{and}\:{y}+\mathrm{3}{x}=\mathrm{20} \\ $$$$\frac{{x}}{\mathrm{3}}+\mathrm{3}{x}=\mathrm{20}\:\:\:{x}=\mathrm{6}\:\:{y}=\mathrm{2} \\ $$$${so}\:{A}\left(\mathrm{4},\mathrm{8}\right)\:\:{B}\left(\mathrm{6},\mathrm{2}\right)\:\:\:{O}\left(\mathrm{0},\mathrm{0}\right) \\ $$$${area}\:{of}\:{OAB} \\ $$$$\frac{\mathrm{1}}{\mathrm{2}}\left[{x}_{\mathrm{1}} \left({y}_{\mathrm{2}} −{y}_{\mathrm{3}} \right)+{x}_{\mathrm{2}} \left({y}_{\mathrm{3}} −{y}_{\mathrm{1}} \right)+{x}_{\mathrm{3}} \left({y}_{\mathrm{1}} −{y}_{\mathrm{2}} \right)\right] \\ $$$$=\frac{\mathrm{1}}{\mathrm{2}}\left[\mathrm{4}\left(\mathrm{2}−\mathrm{0}\right)+\mathrm{6}\left(\mathrm{0}−\mathrm{8}\right)+\mathrm{0}\left(\mathrm{8}−\mathrm{2}\right)\right] \\ $$$$=\frac{\mathrm{1}}{\mathrm{2}}\left[−\mathrm{40}\right] \\ $$$${so}\:{area}\:{is}\:\mathrm{20}\:{unit}... \\ $$

Commented by Tawa1 last updated on 24/Nov/18

God bless you sir

$$\mathrm{God}\:\mathrm{bless}\:\mathrm{you}\:\mathrm{sir} \\ $$

Terms of Service

Privacy Policy

Contact: info@tinkutara.com