Question and Answers Forum

All Questions      Topic List

Coordinate Geometry Questions

Previous in All Question      Next in All Question      

Previous in Coordinate Geometry      Next in Coordinate Geometry      

Question Number 48359 by ajfour last updated on 22/Nov/18

Answered by mr W last updated on 23/Nov/18

(x^2 /a^2 )+(y^2 /b^2 )=1  (x/a^2 )+((yy′)/b^2 )=0⇒y′=−((b^2 x)/(a^2 y))  (x−r)^2 +(y−r)^2 =r^2   (x−r)+(y−r)y′=0⇒y′=−((x−r)/(y−r))  T(h,k)  (h^2 /a^2 )+(k^2 /b^2 )=1  (h−r)^2 +(k−r)^2 =r^2   ((b^2 h)/(a^2 k))=(h/(b+k))=(r/(b+r))  ⇒b^2 (b+k)=a^2 k⇒k=(b^3 /(a^2 −b^2 ))  (h^2 /a^2 )=1−(b^6 /(b^2 (a^2 −b^2 )^2 ))=1−((b^2 /(a^2 −b^2 )))^2 =((a^2 (a^2 −2b^2 ))/((a^2 −b^2 )))  ⇒h=((a^2 (√(a^2 −2b^2 )))/(a^2 −b^2 ))  (b+k−h)r=bh  ⇒r=((bh)/(b+k−h))=((ba^2 (√(a^2 −2b^2 )))/((a^2 −b^2 )(b+(b^3 /(a^2 −b^2 ))−((a^2 (√(a^2 −2b^2 )))/(a^2 −b^2 )))))=((b(√(a^2 −2b^2 )))/(b−(√(a^2 −2b^2 ))))  with λ=(a/b)  ⇒k=(b/(λ^2 −1))  ⇒h=((bλ^2 (√(λ^2 −2)))/(λ^2 −1))  ⇒r=((b(√(λ^2 −2)))/(1−(√(λ^2 −2))))  ⇒(h/r)=((λ^2 (1−(√(λ^2 −2))))/(λ^2 −1))  ⇒(k/r)=((1−(√(λ^2 −2)))/((λ^2 −1)(√(λ^2 −2))))  ((h/r)−1)^2 +((k/r)−1)^2 =1  [((λ^2 (1−(√(λ^2 −2))))/(λ^2 −1))−1]^2 +[((1−(√(λ^2 −2)))/((λ^2 −1)(√(λ^2 −2))))−1]^2 =1  [((1−λ^2 (√(λ^2 −2)))/(λ^2 −1))]^2 +[((1−λ^2 (√(λ^2 −2)))/((λ^2 −1)(√(λ^2 −2))))]^2 =1  ((1−λ^2 (√(λ^2 −2)))/(√((λ^2 −1)(λ^2 −2))))=1  ⇒(λ^2 +(√(λ^2 −1)))(√(λ^2 −2))=1  ⇒λ=(a/b)≈1.4494

$$\frac{{x}^{\mathrm{2}} }{{a}^{\mathrm{2}} }+\frac{{y}^{\mathrm{2}} }{{b}^{\mathrm{2}} }=\mathrm{1} \\ $$$$\frac{{x}}{{a}^{\mathrm{2}} }+\frac{{yy}'}{{b}^{\mathrm{2}} }=\mathrm{0}\Rightarrow{y}'=−\frac{{b}^{\mathrm{2}} {x}}{{a}^{\mathrm{2}} {y}} \\ $$$$\left({x}−{r}\right)^{\mathrm{2}} +\left({y}−{r}\right)^{\mathrm{2}} ={r}^{\mathrm{2}} \\ $$$$\left({x}−{r}\right)+\left({y}−{r}\right){y}'=\mathrm{0}\Rightarrow{y}'=−\frac{{x}−{r}}{{y}−{r}} \\ $$$${T}\left({h},{k}\right) \\ $$$$\frac{{h}^{\mathrm{2}} }{{a}^{\mathrm{2}} }+\frac{{k}^{\mathrm{2}} }{{b}^{\mathrm{2}} }=\mathrm{1} \\ $$$$\left({h}−{r}\right)^{\mathrm{2}} +\left({k}−{r}\right)^{\mathrm{2}} ={r}^{\mathrm{2}} \\ $$$$\frac{{b}^{\mathrm{2}} {h}}{{a}^{\mathrm{2}} {k}}=\frac{{h}}{{b}+{k}}=\frac{{r}}{{b}+{r}} \\ $$$$\Rightarrow{b}^{\mathrm{2}} \left({b}+{k}\right)={a}^{\mathrm{2}} {k}\Rightarrow{k}=\frac{{b}^{\mathrm{3}} }{{a}^{\mathrm{2}} −{b}^{\mathrm{2}} } \\ $$$$\frac{{h}^{\mathrm{2}} }{{a}^{\mathrm{2}} }=\mathrm{1}−\frac{{b}^{\mathrm{6}} }{{b}^{\mathrm{2}} \left({a}^{\mathrm{2}} −{b}^{\mathrm{2}} \right)^{\mathrm{2}} }=\mathrm{1}−\left(\frac{{b}^{\mathrm{2}} }{{a}^{\mathrm{2}} −{b}^{\mathrm{2}} }\right)^{\mathrm{2}} =\frac{{a}^{\mathrm{2}} \left({a}^{\mathrm{2}} −\mathrm{2}{b}^{\mathrm{2}} \right)}{\left({a}^{\mathrm{2}} −{b}^{\mathrm{2}} \right)} \\ $$$$\Rightarrow{h}=\frac{{a}^{\mathrm{2}} \sqrt{{a}^{\mathrm{2}} −\mathrm{2}{b}^{\mathrm{2}} }}{{a}^{\mathrm{2}} −{b}^{\mathrm{2}} } \\ $$$$\left({b}+{k}−{h}\right){r}={bh} \\ $$$$\Rightarrow{r}=\frac{{bh}}{{b}+{k}−{h}}=\frac{{ba}^{\mathrm{2}} \sqrt{{a}^{\mathrm{2}} −\mathrm{2}{b}^{\mathrm{2}} }}{\left({a}^{\mathrm{2}} −{b}^{\mathrm{2}} \right)\left({b}+\frac{{b}^{\mathrm{3}} }{{a}^{\mathrm{2}} −{b}^{\mathrm{2}} }−\frac{{a}^{\mathrm{2}} \sqrt{{a}^{\mathrm{2}} −\mathrm{2}{b}^{\mathrm{2}} }}{{a}^{\mathrm{2}} −{b}^{\mathrm{2}} }\right)}=\frac{{b}\sqrt{{a}^{\mathrm{2}} −\mathrm{2}{b}^{\mathrm{2}} }}{{b}−\sqrt{{a}^{\mathrm{2}} −\mathrm{2}{b}^{\mathrm{2}} }} \\ $$$${with}\:\lambda=\frac{{a}}{{b}} \\ $$$$\Rightarrow{k}=\frac{{b}}{\lambda^{\mathrm{2}} −\mathrm{1}} \\ $$$$\Rightarrow{h}=\frac{{b}\lambda^{\mathrm{2}} \sqrt{\lambda^{\mathrm{2}} −\mathrm{2}}}{\lambda^{\mathrm{2}} −\mathrm{1}} \\ $$$$\Rightarrow{r}=\frac{{b}\sqrt{\lambda^{\mathrm{2}} −\mathrm{2}}}{\mathrm{1}−\sqrt{\lambda^{\mathrm{2}} −\mathrm{2}}} \\ $$$$\Rightarrow\frac{{h}}{{r}}=\frac{\lambda^{\mathrm{2}} \left(\mathrm{1}−\sqrt{\lambda^{\mathrm{2}} −\mathrm{2}}\right)}{\lambda^{\mathrm{2}} −\mathrm{1}} \\ $$$$\Rightarrow\frac{{k}}{{r}}=\frac{\mathrm{1}−\sqrt{\lambda^{\mathrm{2}} −\mathrm{2}}}{\left(\lambda^{\mathrm{2}} −\mathrm{1}\right)\sqrt{\lambda^{\mathrm{2}} −\mathrm{2}}} \\ $$$$\left(\frac{{h}}{{r}}−\mathrm{1}\right)^{\mathrm{2}} +\left(\frac{{k}}{{r}}−\mathrm{1}\right)^{\mathrm{2}} =\mathrm{1} \\ $$$$\left[\frac{\lambda^{\mathrm{2}} \left(\mathrm{1}−\sqrt{\lambda^{\mathrm{2}} −\mathrm{2}}\right)}{\lambda^{\mathrm{2}} −\mathrm{1}}−\mathrm{1}\right]^{\mathrm{2}} +\left[\frac{\mathrm{1}−\sqrt{\lambda^{\mathrm{2}} −\mathrm{2}}}{\left(\lambda^{\mathrm{2}} −\mathrm{1}\right)\sqrt{\lambda^{\mathrm{2}} −\mathrm{2}}}−\mathrm{1}\right]^{\mathrm{2}} =\mathrm{1} \\ $$$$\left[\frac{\mathrm{1}−\lambda^{\mathrm{2}} \sqrt{\lambda^{\mathrm{2}} −\mathrm{2}}}{\lambda^{\mathrm{2}} −\mathrm{1}}\right]^{\mathrm{2}} +\left[\frac{\mathrm{1}−\lambda^{\mathrm{2}} \sqrt{\lambda^{\mathrm{2}} −\mathrm{2}}}{\left(\lambda^{\mathrm{2}} −\mathrm{1}\right)\sqrt{\lambda^{\mathrm{2}} −\mathrm{2}}}\right]^{\mathrm{2}} =\mathrm{1} \\ $$$$\frac{\mathrm{1}−\lambda^{\mathrm{2}} \sqrt{\lambda^{\mathrm{2}} −\mathrm{2}}}{\sqrt{\left(\lambda^{\mathrm{2}} −\mathrm{1}\right)\left(\lambda^{\mathrm{2}} −\mathrm{2}\right)}}=\mathrm{1} \\ $$$$\Rightarrow\left(\lambda^{\mathrm{2}} +\sqrt{\lambda^{\mathrm{2}} −\mathrm{1}}\right)\sqrt{\lambda^{\mathrm{2}} −\mathrm{2}}=\mathrm{1} \\ $$$$\Rightarrow\lambda=\frac{{a}}{{b}}\approx\mathrm{1}.\mathrm{4494} \\ $$

Commented by ajfour last updated on 23/Nov/18

Great!

$${Great}!\: \\ $$

Commented by mr W last updated on 23/Nov/18

to ajfour sir:  −y′=((b^2 h)/(a^2 k))=((h−r)/(k−r))=(h/(b+k))=(r/(b+r))  the condition =((h−r)/(k−r)) is not necessary,  because it′s included in = (h/(b+k))=(r/(b+r)).

$${to}\:{ajfour}\:{sir}: \\ $$$$−{y}'=\frac{{b}^{\mathrm{2}} {h}}{{a}^{\mathrm{2}} {k}}=\frac{{h}−{r}}{{k}−{r}}=\frac{{h}}{{b}+{k}}=\frac{{r}}{{b}+{r}} \\ $$$${the}\:{condition}\:=\frac{{h}−{r}}{{k}−{r}}\:{is}\:{not}\:{necessary}, \\ $$$${because}\:{it}'{s}\:{included}\:{in}\:=\:\frac{{h}}{{b}+{k}}=\frac{{r}}{{b}+{r}}. \\ $$

Commented by ajfour last updated on 23/Nov/18

how   ((h−R)/(k−R)) = (h/(b+k))    Sir ?     Line 8 .

$${how}\:\:\:\frac{{h}−{R}}{{k}−{R}}\:=\:\frac{{h}}{{b}+{k}}\:\:\:\:{Sir}\:? \\ $$$$\:\:\:{Line}\:\mathrm{8}\:. \\ $$

Commented by MJS last updated on 23/Nov/18

you′re losing the 2^(nd)  solution by taking the  root in the 3^(rd)  line from the bottom.  λ=±1.44941 ∨ λ=±1.60446  ⇒ 2 circles are possible

$$\mathrm{you}'\mathrm{re}\:\mathrm{losing}\:\mathrm{the}\:\mathrm{2}^{\mathrm{nd}} \:\mathrm{solution}\:\mathrm{by}\:\mathrm{taking}\:\mathrm{the} \\ $$$$\mathrm{root}\:\mathrm{in}\:\mathrm{the}\:\mathrm{3}^{\mathrm{rd}} \:\mathrm{line}\:\mathrm{from}\:\mathrm{the}\:\mathrm{bottom}. \\ $$$$\lambda=\pm\mathrm{1}.\mathrm{44941}\:\vee\:\lambda=\pm\mathrm{1}.\mathrm{60446} \\ $$$$\Rightarrow\:\mathrm{2}\:\mathrm{circles}\:\mathrm{are}\:\mathrm{possible} \\ $$

Commented by mr W last updated on 23/Nov/18

to MJS sir:  you are right. the final eqn. after taking  root should be   ((1−λ^2 (√(λ^2 −2)))/(√((λ^2 −1)(λ^2 −2))))=±1  or  (λ^2 ±(√(λ^2 −1)))(√(λ^2 −2))=1  but “−” is for the circle outside of ellipse.

$${to}\:{MJS}\:{sir}: \\ $$$${you}\:{are}\:{right}.\:{the}\:{final}\:{eqn}.\:{after}\:{taking} \\ $$$${root}\:{should}\:{be}\: \\ $$$$\frac{\mathrm{1}−\lambda^{\mathrm{2}} \sqrt{\lambda^{\mathrm{2}} −\mathrm{2}}}{\sqrt{\left(\lambda^{\mathrm{2}} −\mathrm{1}\right)\left(\lambda^{\mathrm{2}} −\mathrm{2}\right)}}=\pm\mathrm{1} \\ $$$${or} \\ $$$$\left(\lambda^{\mathrm{2}} \pm\sqrt{\lambda^{\mathrm{2}} −\mathrm{1}}\right)\sqrt{\lambda^{\mathrm{2}} −\mathrm{2}}=\mathrm{1} \\ $$$${but}\:``−''\:{is}\:{for}\:{the}\:{circle}\:{outside}\:{of}\:{ellipse}. \\ $$

Commented by mr W last updated on 23/Nov/18

Commented by mr W last updated on 23/Nov/18

Commented by ajfour last updated on 23/Nov/18

Thank you both. I should have  drawn two such circles in the  question diagram itself..

$${Thank}\:{you}\:{both}.\:{I}\:{should}\:{have} \\ $$$${drawn}\:{two}\:{such}\:{circles}\:{in}\:{the} \\ $$$${question}\:{diagram}\:{itself}.. \\ $$

Answered by MJS last updated on 22/Nov/18

T= ((((a^2 (√(a^2 −2b^2 )))/(a^2 −b^2 ))),((b^3 /(a^2 −b^2 ))) )  B= ((0),((−b)) )  from C∈y=x ∧ C∈BT ⇒  ⇒ C= ((r),(r) )  r=((b(√(a^2 −2b^2 )))/(b−(√(a^2 −2b^2 ))))    I put a=1  ∣CT∣^2 =r^2   this leads to a 6^(th)  degree polynome which had  2 real solutions:  a=1; b_1 =.689937; c_1 =1.95025       [circle touches ellipse from outside]  a=1; b_2 =.623263; c_2 =.320906       [circle touches ellipse from inside]

$${T}=\begin{pmatrix}{\frac{{a}^{\mathrm{2}} \sqrt{{a}^{\mathrm{2}} −\mathrm{2}{b}^{\mathrm{2}} }}{{a}^{\mathrm{2}} −{b}^{\mathrm{2}} }}\\{\frac{{b}^{\mathrm{3}} }{{a}^{\mathrm{2}} −{b}^{\mathrm{2}} }}\end{pmatrix}\:\:{B}=\begin{pmatrix}{\mathrm{0}}\\{−{b}}\end{pmatrix} \\ $$$$\mathrm{from}\:{C}\in{y}={x}\:\wedge\:{C}\in{BT}\:\Rightarrow \\ $$$$\Rightarrow\:{C}=\begin{pmatrix}{{r}}\\{{r}}\end{pmatrix}\:\:{r}=\frac{{b}\sqrt{{a}^{\mathrm{2}} −\mathrm{2}{b}^{\mathrm{2}} }}{{b}−\sqrt{{a}^{\mathrm{2}} −\mathrm{2}{b}^{\mathrm{2}} }} \\ $$$$ \\ $$$$\mathrm{I}\:\mathrm{put}\:{a}=\mathrm{1} \\ $$$$\mid{CT}\mid^{\mathrm{2}} ={r}^{\mathrm{2}} \\ $$$$\mathrm{this}\:\mathrm{leads}\:\mathrm{to}\:\mathrm{a}\:\mathrm{6}^{\mathrm{th}} \:\mathrm{degree}\:\mathrm{polynome}\:\mathrm{which}\:\mathrm{had} \\ $$$$\mathrm{2}\:\mathrm{real}\:\mathrm{solutions}: \\ $$$${a}=\mathrm{1};\:{b}_{\mathrm{1}} =.\mathrm{689937};\:{c}_{\mathrm{1}} =\mathrm{1}.\mathrm{95025} \\ $$$$\:\:\:\:\:\left[\mathrm{circle}\:\mathrm{touches}\:\mathrm{ellipse}\:\mathrm{from}\:\mathrm{outside}\right] \\ $$$${a}=\mathrm{1};\:{b}_{\mathrm{2}} =.\mathrm{623263};\:{c}_{\mathrm{2}} =.\mathrm{320906} \\ $$$$\:\:\:\:\:\left[\mathrm{circle}\:\mathrm{touches}\:\mathrm{ellipse}\:\mathrm{from}\:\mathrm{inside}\right] \\ $$

Commented by ajfour last updated on 23/Nov/18

Sir, first of all how to arrive at  coordinates of T  ; your method ?

$${Sir},\:{first}\:{of}\:{all}\:{how}\:{to}\:{arrive}\:{at} \\ $$$${coordinates}\:{of}\:{T}\:\:;\:{your}\:{method}\:? \\ $$

Commented by MJS last updated on 23/Nov/18

y=(b/a)(√(a^2 −x^2 ))  normal in x=t: y=kx+d  y′=−((bt)/(a(√(a^2 −t^2 )))) ⇒  k=((a(√(a^2 −t^2 )))/(bt))  d=y−kt=−((a^2 −b^2 )/(ab))(√(a^2 −t^2 ))  but d=−b ⇒ t=±((a^2 (√(a^2 −2b^3 )))/(a^2 −b^2 )) ∧ a>b ∧ a^2 ≥2b^2   u=(b/a)(√(a^2 −t^2 ))=(b^3 /(a^2 −b^2 ))  line BT: y=((b+u)/t)x−b  (y=((b+u)/t)x−b)∩(y=x) ⇒ x=((bt)/(b−t+u))=((b(√(a^2 −2b^2 )))/(b−(√(a^2 −2b^2 ))))=r  ∣CT∣^2 =r^2   this leads to  2a^2 b^3 (√(a^2 −2b^2 ))=(a−b)^3 (a+b)^3   squaring leads to  a^(12) −6a^(10) b^2 +15a^8 b^4 −24a^6 b^6 +23a^4 b^8 −6a^2 b^(10) +b^(12) =0  a=(√p); b=(√q)  p^6 −6p^5 q+15p^4 q^2 −24p^3 q^3 +23p^2 q^4 −6pq^5 +q^6 =0  p=1  q^6 −6q^5 +23q^4 −24q^3 +15q^2 −6q+1=0  approximating ⇒ q=.388457 ∨ q=.476013  ⇒ b=.623263 ∨ b=.689937

$${y}=\frac{{b}}{{a}}\sqrt{{a}^{\mathrm{2}} −{x}^{\mathrm{2}} } \\ $$$$\mathrm{normal}\:\mathrm{in}\:{x}={t}:\:{y}={kx}+{d} \\ $$$${y}'=−\frac{{bt}}{{a}\sqrt{{a}^{\mathrm{2}} −{t}^{\mathrm{2}} }}\:\Rightarrow\:\:{k}=\frac{{a}\sqrt{{a}^{\mathrm{2}} −{t}^{\mathrm{2}} }}{{bt}} \\ $$$${d}={y}−{kt}=−\frac{{a}^{\mathrm{2}} −{b}^{\mathrm{2}} }{{ab}}\sqrt{{a}^{\mathrm{2}} −{t}^{\mathrm{2}} } \\ $$$$\mathrm{but}\:{d}=−{b}\:\Rightarrow\:{t}=\pm\frac{{a}^{\mathrm{2}} \sqrt{{a}^{\mathrm{2}} −\mathrm{2}{b}^{\mathrm{3}} }}{{a}^{\mathrm{2}} −{b}^{\mathrm{2}} }\:\wedge\:{a}>{b}\:\wedge\:{a}^{\mathrm{2}} \geqslant\mathrm{2}{b}^{\mathrm{2}} \\ $$$${u}=\frac{{b}}{{a}}\sqrt{{a}^{\mathrm{2}} −{t}^{\mathrm{2}} }=\frac{{b}^{\mathrm{3}} }{{a}^{\mathrm{2}} −{b}^{\mathrm{2}} } \\ $$$$\mathrm{line}\:{BT}:\:{y}=\frac{{b}+{u}}{{t}}{x}−{b} \\ $$$$\left({y}=\frac{{b}+{u}}{{t}}{x}−{b}\right)\cap\left({y}={x}\right)\:\Rightarrow\:{x}=\frac{{bt}}{{b}−{t}+{u}}=\frac{{b}\sqrt{{a}^{\mathrm{2}} −\mathrm{2}{b}^{\mathrm{2}} }}{{b}−\sqrt{{a}^{\mathrm{2}} −\mathrm{2}{b}^{\mathrm{2}} }}={r} \\ $$$$\mid{CT}\mid^{\mathrm{2}} ={r}^{\mathrm{2}} \\ $$$$\mathrm{this}\:\mathrm{leads}\:\mathrm{to} \\ $$$$\mathrm{2}{a}^{\mathrm{2}} {b}^{\mathrm{3}} \sqrt{{a}^{\mathrm{2}} −\mathrm{2}{b}^{\mathrm{2}} }=\left({a}−{b}\right)^{\mathrm{3}} \left({a}+{b}\right)^{\mathrm{3}} \\ $$$$\mathrm{squaring}\:\mathrm{leads}\:\mathrm{to} \\ $$$${a}^{\mathrm{12}} −\mathrm{6}{a}^{\mathrm{10}} {b}^{\mathrm{2}} +\mathrm{15}{a}^{\mathrm{8}} {b}^{\mathrm{4}} −\mathrm{24}{a}^{\mathrm{6}} {b}^{\mathrm{6}} +\mathrm{23}{a}^{\mathrm{4}} {b}^{\mathrm{8}} −\mathrm{6}{a}^{\mathrm{2}} {b}^{\mathrm{10}} +{b}^{\mathrm{12}} =\mathrm{0} \\ $$$${a}=\sqrt{{p}};\:{b}=\sqrt{{q}} \\ $$$${p}^{\mathrm{6}} −\mathrm{6}{p}^{\mathrm{5}} {q}+\mathrm{15}{p}^{\mathrm{4}} {q}^{\mathrm{2}} −\mathrm{24}{p}^{\mathrm{3}} {q}^{\mathrm{3}} +\mathrm{23}{p}^{\mathrm{2}} {q}^{\mathrm{4}} −\mathrm{6}{pq}^{\mathrm{5}} +{q}^{\mathrm{6}} =\mathrm{0} \\ $$$${p}=\mathrm{1} \\ $$$${q}^{\mathrm{6}} −\mathrm{6}{q}^{\mathrm{5}} +\mathrm{23}{q}^{\mathrm{4}} −\mathrm{24}{q}^{\mathrm{3}} +\mathrm{15}{q}^{\mathrm{2}} −\mathrm{6}{q}+\mathrm{1}=\mathrm{0} \\ $$$$\mathrm{approximating}\:\Rightarrow\:{q}=.\mathrm{388457}\:\vee\:{q}=.\mathrm{476013} \\ $$$$\Rightarrow\:{b}=.\mathrm{623263}\:\vee\:{b}=.\mathrm{689937} \\ $$

Terms of Service

Privacy Policy

Contact: info@tinkutara.com