Question and Answers Forum

All Questions      Topic List

Mechanics Questions

Previous in All Question      Next in All Question      

Previous in Mechanics      Next in Mechanics      

Question Number 48285 by ajfour last updated on 21/Nov/18

Commented by ajfour last updated on 21/Nov/18

Find maximum θ (< π/2) when  equilibrium prevails too.

$${Find}\:{maximum}\:\theta\:\left(<\:\pi/\mathrm{2}\right)\:{when} \\ $$$${equilibrium}\:{prevails}\:{too}. \\ $$

Commented by ajfour last updated on 22/Nov/18

Answered by mr W last updated on 23/Nov/18

α=inclination of rod L w.r.t. ground  β=inclination of rod l  λ=l/L, ϱ=m/M  L sin α=l sin β  ⇒sin β=((sin α)/λ)  cos β=(√(1−((sin^2  α)/λ^2 )))=((√(λ^2 −sin^2  α))/λ)  N_1 (L cos α+l cos β)=Mg(((L cos α)/2)+l cos β)+mg((l cos β)/2)  ⇒N_1 =((MgL cos α+(2M+m)gl cos β)/(2(L cos α+l cos β)))  ⇒N_2 =(((M+2m)gL cos α+mgl cos β)/(2(L cos α+l cos β)))    N_1 Lcos α−Mg((L cos α)/2)−f_1 L sin α=0  f_1 =((2N_1 cos α−Mg cos α)/(2 sin α))=μN_1  ⇒ no slipping at  point A   2N_1 (cos α−μ sin α)=Mg cos α  ((MgL cos α+(2M+m)gl cos β)/((L cos α+l cos β)))(cos α−μ sin α)=Mg cos α  ((1+λ(2+ϱ)((cos β)/(cos α)))/((1+λ((cos β)/(cos ϑ)))))(1−μ tan α)=1  ⇒(1−μ tan α)[1+(2+ϱ)((√(λ^2 −sin^2  α))/(cos α))]=1+((√(λ^2 −sin^2  α))/(cos α))   ...(i)  ⇒α=α_1 =...  similarly  N_2 l cos β−mg((l cos β)/2)−f_2 l sin β=0  f_2 =((2N_2 cos β−mg cos β)/(2 sin β))=μN_2  ⇒no slipping at point B  2N_2 (cos β−μ sin β)=mg cos β  (((M+2m)gL cos α+mgl cos β)/((L cos α+l cos β)))(cos β−μ sin β)=mg cos β  (((1+2ϱ)((cos α)/(cos β))+ϱλ)/((((cos α)/(cos β))+λ)))(1−μ tan β)=ϱ  ⇒(((1+2ϱ)cos α+ϱ(√(λ^2 −sin^2  α)))/(cos α+(√(λ^2 −sin^2  α))))(1−((μ sin α)/(√(λ^2 −sin^2  α))))=ϱ   ...(ii)  ⇒α=α_2 =...    ⇒α=max(α_1 ,α_2 )  ⇒β=sin^(−1) (sin α/λ)  ⇒θ=π−α−β    Example: λ=l/L=0.75, ϱ=m/M=1.5, μ=0.5  α_1 =41.5624° from (i)  α_2 =32.2635° from (ii)  ⇒α=41.5624°  ⇒β=sin^(−1) (sin α/λ)=62.20°  ⇒θ_(max) =180−41.56−62.20=76.24°

$$\alpha={inclination}\:{of}\:{rod}\:{L}\:{w}.{r}.{t}.\:{ground} \\ $$$$\beta={inclination}\:{of}\:{rod}\:{l} \\ $$$$\lambda={l}/{L},\:\varrho={m}/{M} \\ $$$${L}\:\mathrm{sin}\:\alpha={l}\:\mathrm{sin}\:\beta \\ $$$$\Rightarrow\mathrm{sin}\:\beta=\frac{\mathrm{sin}\:\alpha}{\lambda} \\ $$$$\mathrm{cos}\:\beta=\sqrt{\mathrm{1}−\frac{\mathrm{sin}^{\mathrm{2}} \:\alpha}{\lambda^{\mathrm{2}} }}=\frac{\sqrt{\lambda^{\mathrm{2}} −\mathrm{sin}^{\mathrm{2}} \:\alpha}}{\lambda} \\ $$$${N}_{\mathrm{1}} \left({L}\:\mathrm{cos}\:\alpha+{l}\:\mathrm{cos}\:\beta\right)={Mg}\left(\frac{{L}\:\mathrm{cos}\:\alpha}{\mathrm{2}}+{l}\:\mathrm{cos}\:\beta\right)+{mg}\frac{{l}\:\mathrm{cos}\:\beta}{\mathrm{2}} \\ $$$$\Rightarrow{N}_{\mathrm{1}} =\frac{{MgL}\:\mathrm{cos}\:\alpha+\left(\mathrm{2}{M}+{m}\right){gl}\:\mathrm{cos}\:\beta}{\mathrm{2}\left({L}\:\mathrm{cos}\:\alpha+{l}\:\mathrm{cos}\:\beta\right)} \\ $$$$\Rightarrow{N}_{\mathrm{2}} =\frac{\left({M}+\mathrm{2}{m}\right){gL}\:\mathrm{cos}\:\alpha+{mgl}\:\mathrm{cos}\:\beta}{\mathrm{2}\left({L}\:\mathrm{cos}\:\alpha+{l}\:\mathrm{cos}\:\beta\right)} \\ $$$$ \\ $$$${N}_{\mathrm{1}} {L}\mathrm{cos}\:\alpha−{Mg}\frac{{L}\:\mathrm{cos}\:\alpha}{\mathrm{2}}−{f}_{\mathrm{1}} {L}\:\mathrm{sin}\:\alpha=\mathrm{0} \\ $$$${f}_{\mathrm{1}} =\frac{\mathrm{2}{N}_{\mathrm{1}} \mathrm{cos}\:\alpha−{Mg}\:\mathrm{cos}\:\alpha}{\mathrm{2}\:\mathrm{sin}\:\alpha}=\mu{N}_{\mathrm{1}} \:\Rightarrow\:{no}\:{slipping}\:{at}\:\:{point}\:{A}\: \\ $$$$\mathrm{2}{N}_{\mathrm{1}} \left(\mathrm{cos}\:\alpha−\mu\:\mathrm{sin}\:\alpha\right)={Mg}\:\mathrm{cos}\:\alpha \\ $$$$\frac{{MgL}\:\mathrm{cos}\:\alpha+\left(\mathrm{2}{M}+{m}\right){gl}\:\mathrm{cos}\:\beta}{\left({L}\:\mathrm{cos}\:\alpha+{l}\:\mathrm{cos}\:\beta\right)}\left(\mathrm{cos}\:\alpha−\mu\:\mathrm{sin}\:\alpha\right)={Mg}\:\mathrm{cos}\:\alpha \\ $$$$\frac{\mathrm{1}+\lambda\left(\mathrm{2}+\varrho\right)\frac{\mathrm{cos}\:\beta}{\mathrm{cos}\:\alpha}}{\left(\mathrm{1}+\lambda\frac{\mathrm{cos}\:\beta}{\mathrm{cos}\:\vartheta}\right)}\left(\mathrm{1}−\mu\:\mathrm{tan}\:\alpha\right)=\mathrm{1} \\ $$$$\Rightarrow\left(\mathrm{1}−\mu\:\mathrm{tan}\:\alpha\right)\left[\mathrm{1}+\left(\mathrm{2}+\varrho\right)\frac{\sqrt{\lambda^{\mathrm{2}} −\mathrm{sin}^{\mathrm{2}} \:\alpha}}{\mathrm{cos}\:\alpha}\right]=\mathrm{1}+\frac{\sqrt{\lambda^{\mathrm{2}} −\mathrm{sin}^{\mathrm{2}} \:\alpha}}{\mathrm{cos}\:\alpha}\:\:\:...\left({i}\right) \\ $$$$\Rightarrow\alpha=\alpha_{\mathrm{1}} =... \\ $$$${similarly} \\ $$$${N}_{\mathrm{2}} {l}\:\mathrm{cos}\:\beta−{mg}\frac{{l}\:\mathrm{cos}\:\beta}{\mathrm{2}}−{f}_{\mathrm{2}} {l}\:\mathrm{sin}\:\beta=\mathrm{0} \\ $$$${f}_{\mathrm{2}} =\frac{\mathrm{2}{N}_{\mathrm{2}} \mathrm{cos}\:\beta−{mg}\:\mathrm{cos}\:\beta}{\mathrm{2}\:\mathrm{sin}\:\beta}=\mu{N}_{\mathrm{2}} \:\Rightarrow{no}\:{slipping}\:{at}\:{point}\:{B} \\ $$$$\mathrm{2}{N}_{\mathrm{2}} \left(\mathrm{cos}\:\beta−\mu\:\mathrm{sin}\:\beta\right)={mg}\:\mathrm{cos}\:\beta \\ $$$$\frac{\left({M}+\mathrm{2}{m}\right){gL}\:\mathrm{cos}\:\alpha+{mgl}\:\mathrm{cos}\:\beta}{\left({L}\:\mathrm{cos}\:\alpha+{l}\:\mathrm{cos}\:\beta\right)}\left(\mathrm{cos}\:\beta−\mu\:\mathrm{sin}\:\beta\right)={mg}\:\mathrm{cos}\:\beta \\ $$$$\frac{\left(\mathrm{1}+\mathrm{2}\varrho\right)\frac{\mathrm{cos}\:\alpha}{\mathrm{cos}\:\beta}+\varrho\lambda}{\left(\frac{\mathrm{cos}\:\alpha}{\mathrm{cos}\:\beta}+\lambda\right)}\left(\mathrm{1}−\mu\:\mathrm{tan}\:\beta\right)=\varrho \\ $$$$\Rightarrow\frac{\left(\mathrm{1}+\mathrm{2}\varrho\right)\mathrm{cos}\:\alpha+\varrho\sqrt{\lambda^{\mathrm{2}} −\mathrm{sin}^{\mathrm{2}} \:\alpha}}{\mathrm{cos}\:\alpha+\sqrt{\lambda^{\mathrm{2}} −\mathrm{sin}^{\mathrm{2}} \:\alpha}}\left(\mathrm{1}−\frac{\mu\:\mathrm{sin}\:\alpha}{\sqrt{\lambda^{\mathrm{2}} −\mathrm{sin}^{\mathrm{2}} \:\alpha}}\right)=\varrho\:\:\:...\left({ii}\right) \\ $$$$\Rightarrow\alpha=\alpha_{\mathrm{2}} =... \\ $$$$ \\ $$$$\Rightarrow\alpha={max}\left(\alpha_{\mathrm{1}} ,\alpha_{\mathrm{2}} \right) \\ $$$$\Rightarrow\beta=\mathrm{sin}^{−\mathrm{1}} \left(\mathrm{sin}\:\alpha/\lambda\right) \\ $$$$\Rightarrow\theta=\pi−\alpha−\beta \\ $$$$ \\ $$$${Example}:\:\lambda={l}/{L}=\mathrm{0}.\mathrm{75},\:\varrho={m}/{M}=\mathrm{1}.\mathrm{5},\:\mu=\mathrm{0}.\mathrm{5} \\ $$$$\alpha_{\mathrm{1}} =\mathrm{41}.\mathrm{5624}°\:{from}\:\left({i}\right) \\ $$$$\alpha_{\mathrm{2}} =\mathrm{32}.\mathrm{2635}°\:{from}\:\left({ii}\right) \\ $$$$\Rightarrow\alpha=\mathrm{41}.\mathrm{5624}° \\ $$$$\Rightarrow\beta=\mathrm{sin}^{−\mathrm{1}} \left(\mathrm{sin}\:\alpha/\lambda\right)=\mathrm{62}.\mathrm{20}° \\ $$$$\Rightarrow\theta_{{max}} =\mathrm{180}−\mathrm{41}.\mathrm{56}−\mathrm{62}.\mathrm{20}=\mathrm{76}.\mathrm{24}° \\ $$

Commented by ajfour last updated on 23/Nov/18

Thanks sir for solution and  objection to my solution as well.

$${Thanks}\:{sir}\:{for}\:{solution}\:{and} \\ $$$${objection}\:{to}\:{my}\:{solution}\:{as}\:{well}. \\ $$

Terms of Service

Privacy Policy

Contact: info@tinkutara.com