Question and Answers Forum

All Questions      Topic List

None Questions

Previous in All Question      Next in All Question      

Previous in None      Next in None      

Question Number 48283 by naka3546 last updated on 21/Nov/18

Commented by maxmathsup by imad last updated on 22/Nov/18

let S_n =Σ_(k=1) ^n  (((−1)^(k+1) )/(2k−1))  changement of indice k−1=j give  S_n =Σ_(j=0) ^(n−1)   (((−1)^j )/(2j+1)) =Σ_(j=0) ^n   (((−1)^j )/(2j+1)) −(((−1)^n )/(2n+1)) →(π/4) ⇒  −4S_n →−π⇒π−4S_(n/) →0 ⇒∃ a error a the Question..

$${let}\:{S}_{{n}} =\sum_{{k}=\mathrm{1}} ^{{n}} \:\frac{\left(−\mathrm{1}\right)^{{k}+\mathrm{1}} }{\mathrm{2}{k}−\mathrm{1}}\:\:{changement}\:{of}\:{indice}\:{k}−\mathrm{1}={j}\:{give} \\ $$$${S}_{{n}} =\sum_{{j}=\mathrm{0}} ^{{n}−\mathrm{1}} \:\:\frac{\left(−\mathrm{1}\right)^{{j}} }{\mathrm{2}{j}+\mathrm{1}}\:=\sum_{{j}=\mathrm{0}} ^{{n}} \:\:\frac{\left(−\mathrm{1}\right)^{{j}} }{\mathrm{2}{j}+\mathrm{1}}\:−\frac{\left(−\mathrm{1}\right)^{{n}} }{\mathrm{2}{n}+\mathrm{1}}\:\rightarrow\frac{\pi}{\mathrm{4}}\:\Rightarrow \\ $$$$−\mathrm{4}{S}_{{n}} \rightarrow−\pi\Rightarrow\pi−\mathrm{4}{S}_{\frac{{n}}{}} \rightarrow\mathrm{0}\:\Rightarrow\exists\:{a}\:{error}\:{a}\:{the}\:{Question}.. \\ $$

Answered by tanmay.chaudhury50@gmail.com last updated on 22/Nov/18

s=Σ_(k=1) ^n (((−1)^(k+1) )/(2k−1))  =(1/1)−(1/3)+(1/5)−...+(((−1)^(n+1) )/(2n−1))  if n→∞  s_∞ =(1/1)−(1/3)+(1/5)−...+(((−1)^(n+1) )/(2n−1))+...∞  gregory series...  tan^(−1) x=x−(x^3 /3)+(x^5 /5)+...  put x=1  (π/4)=1−(1/3)+(1/5)−(1/7)+...  so answer is coming  π−4×(π/4)=0

$${s}=\underset{{k}=\mathrm{1}} {\overset{{n}} {\sum}}\frac{\left(−\mathrm{1}\right)^{{k}+\mathrm{1}} }{\mathrm{2}{k}−\mathrm{1}} \\ $$$$=\frac{\mathrm{1}}{\mathrm{1}}−\frac{\mathrm{1}}{\mathrm{3}}+\frac{\mathrm{1}}{\mathrm{5}}−...+\frac{\left(−\mathrm{1}\right)^{{n}+\mathrm{1}} }{\mathrm{2}{n}−\mathrm{1}} \\ $$$${if}\:{n}\rightarrow\infty \\ $$$${s}_{\infty} =\frac{\mathrm{1}}{\mathrm{1}}−\frac{\mathrm{1}}{\mathrm{3}}+\frac{\mathrm{1}}{\mathrm{5}}−...+\frac{\left(−\mathrm{1}\right)^{{n}+\mathrm{1}} }{\mathrm{2}{n}−\mathrm{1}}+...\infty \\ $$$${gregory}\:{series}... \\ $$$${tan}^{−\mathrm{1}} {x}={x}−\frac{{x}^{\mathrm{3}} }{\mathrm{3}}+\frac{{x}^{\mathrm{5}} }{\mathrm{5}}+... \\ $$$${put}\:{x}=\mathrm{1} \\ $$$$\frac{\pi}{\mathrm{4}}=\mathrm{1}−\frac{\mathrm{1}}{\mathrm{3}}+\frac{\mathrm{1}}{\mathrm{5}}−\frac{\mathrm{1}}{\mathrm{7}}+... \\ $$$${so}\:{answer}\:{is}\:{coming} \\ $$$$\pi−\mathrm{4}×\frac{\pi}{\mathrm{4}}=\mathrm{0} \\ $$

Terms of Service

Privacy Policy

Contact: info@tinkutara.com