Question and Answers Forum

All Questions      Topic List

Mechanics Questions

Previous in All Question      Next in All Question      

Previous in Mechanics      Next in Mechanics      

Question Number 48050 by ajfour last updated on 18/Nov/18

Commented by ajfour last updated on 18/Nov/18

Find acceleration of sphere and  angular velocity of plank as a  function of a subsequent angle θ.  Assume all surfaces frictionless  and figure depicts the initial  situation when system is released  at rest.

$${Find}\:{acceleration}\:{of}\:{sphere}\:{and} \\ $$$${angular}\:{velocity}\:{of}\:{plank}\:{as}\:{a} \\ $$$${function}\:{of}\:{a}\:{subsequent}\:{angle}\:\theta. \\ $$$${Assume}\:{all}\:{surfaces}\:{frictionless} \\ $$$${and}\:{figure}\:{depicts}\:{the}\:{initial} \\ $$$${situation}\:{when}\:{system}\:{is}\:{released} \\ $$$${at}\:{rest}. \\ $$

Answered by mr W last updated on 19/Nov/18

Commented by mr W last updated on 19/Nov/18

v=(dx/dt), ω=(dθ/dt)  x tan (θ/2)=R  v tan (θ/2)+x (ω/(2 cos^2  (θ/2)))=0  v tan^2  (θ/2)+((ωR)/(2 cos^2  (θ/2)))=0  v sin^2  (θ/2)+((ωR)/2)=0  ⇒ω=−((2v sin^2  (θ/2))/R)=(((cos θ−1)v)/R)  ((mv^2 )/2)+((Iω^2 )/2)=((MgL(sin α−sin θ))/2)  mv^2 +((ML^2 )/3)×((v^2 (cos θ−1)^2 )/R^2 )=MgL(sin α−sin θ)  let κ=(m/M), λ=(L/R)  [κ+((λ^2 (cos θ−1)^2 )/3)]v^2 =gL(sin α−sin θ)  v^2 =((gL(sin α−sin θ))/(κ+((λ^2 (cos θ−1)^2 )/3)))  ⇒v=(√((gL(sin α−sin θ))/(κ+((λ^2 (cos θ−1)^2 )/3))))  ⇒ω=((cos θ−1)/R)(√((gL(sin α−sin θ))/(κ+((λ^2 (cos θ−1)^2 )/3))))  a=(dv/dt)=ω(dv/dθ)=......

$${v}=\frac{{dx}}{{dt}},\:\omega=\frac{{d}\theta}{{dt}} \\ $$$${x}\:\mathrm{tan}\:\frac{\theta}{\mathrm{2}}={R} \\ $$$${v}\:\mathrm{tan}\:\frac{\theta}{\mathrm{2}}+{x}\:\frac{\omega}{\mathrm{2}\:\mathrm{cos}^{\mathrm{2}} \:\frac{\theta}{\mathrm{2}}}=\mathrm{0} \\ $$$${v}\:\mathrm{tan}^{\mathrm{2}} \:\frac{\theta}{\mathrm{2}}+\frac{\omega{R}}{\mathrm{2}\:\mathrm{cos}^{\mathrm{2}} \:\frac{\theta}{\mathrm{2}}}=\mathrm{0} \\ $$$${v}\:\mathrm{sin}^{\mathrm{2}} \:\frac{\theta}{\mathrm{2}}+\frac{\omega{R}}{\mathrm{2}}=\mathrm{0} \\ $$$$\Rightarrow\omega=−\frac{\mathrm{2}{v}\:\mathrm{sin}^{\mathrm{2}} \:\frac{\theta}{\mathrm{2}}}{{R}}=\frac{\left(\mathrm{cos}\:\theta−\mathrm{1}\right){v}}{{R}} \\ $$$$\frac{{mv}^{\mathrm{2}} }{\mathrm{2}}+\frac{{I}\omega^{\mathrm{2}} }{\mathrm{2}}=\frac{{MgL}\left(\mathrm{sin}\:\alpha−\mathrm{sin}\:\theta\right)}{\mathrm{2}} \\ $$$${mv}^{\mathrm{2}} +\frac{{ML}^{\mathrm{2}} }{\mathrm{3}}×\frac{{v}^{\mathrm{2}} \left(\mathrm{cos}\:\theta−\mathrm{1}\right)^{\mathrm{2}} }{{R}^{\mathrm{2}} }={MgL}\left(\mathrm{sin}\:\alpha−\mathrm{sin}\:\theta\right) \\ $$$${let}\:\kappa=\frac{{m}}{{M}},\:\lambda=\frac{{L}}{{R}} \\ $$$$\left[\kappa+\frac{\lambda^{\mathrm{2}} \left(\mathrm{cos}\:\theta−\mathrm{1}\right)^{\mathrm{2}} }{\mathrm{3}}\right]{v}^{\mathrm{2}} ={gL}\left(\mathrm{sin}\:\alpha−\mathrm{sin}\:\theta\right) \\ $$$${v}^{\mathrm{2}} =\frac{{gL}\left(\mathrm{sin}\:\alpha−\mathrm{sin}\:\theta\right)}{\kappa+\frac{\lambda^{\mathrm{2}} \left(\mathrm{cos}\:\theta−\mathrm{1}\right)^{\mathrm{2}} }{\mathrm{3}}} \\ $$$$\Rightarrow{v}=\sqrt{\frac{{gL}\left(\mathrm{sin}\:\alpha−\mathrm{sin}\:\theta\right)}{\kappa+\frac{\lambda^{\mathrm{2}} \left(\mathrm{cos}\:\theta−\mathrm{1}\right)^{\mathrm{2}} }{\mathrm{3}}}} \\ $$$$\Rightarrow\omega=\frac{\mathrm{cos}\:\theta−\mathrm{1}}{{R}}\sqrt{\frac{{gL}\left(\mathrm{sin}\:\alpha−\mathrm{sin}\:\theta\right)}{\kappa+\frac{\lambda^{\mathrm{2}} \left(\mathrm{cos}\:\theta−\mathrm{1}\right)^{\mathrm{2}} }{\mathrm{3}}}} \\ $$$${a}=\frac{{dv}}{{dt}}=\omega\frac{{dv}}{{d}\theta}=...... \\ $$

Commented by ajfour last updated on 19/Nov/18

Too Good, Sir! I will also try..

$${Too}\:{Good},\:{Sir}!\:{I}\:{will}\:{also}\:{try}.. \\ $$

Terms of Service

Privacy Policy

Contact: info@tinkutara.com