| 
 | ||
| Question and Answers Forum | ||
| Question Number 47342 by ajfour last updated on 08/Nov/18 | ||
|  | ||
| Commented by ajfour last updated on 08/Nov/18 | ||
|  | ||
| Answered by MrW3 last updated on 08/Nov/18 | ||
| ![a_1 =acceleration of wedge (→)  a_2 =acceleration of small block on ground (←)  a_3 =acceleration of small block on wedge (↙)  a_3 =a_1 +a_2   T=m_o a_2   mg sin β−T=m(a_3 −a_1 cos β)=m[(1−cos β)a_1 +a_2 ]  mg cos β−N=ma_1 sin β  ⇒N=m(g cos β−a_1 sin β)  T−T cos β+N sin β=Ma_1   T(1−cos β)+m(g cos β−a_1 sin β)sin β=Ma_1   m_0 a_2 (1−cos β)+m(g cos β−a_1 sin β)sin β=Ma_1   ⇒(M+m sin^2  β)a_1 −m_0 (1−cos β)a_2 =mg cos βsin β   ...(i)  ⇒m(1−cos β)a_1 +(m+m_0 )a_2 =mg sin β   ...(ii)    ⇒[(m+m_0 )(M+m sin^2  β)+m_0 m(1−cos β)^2 ]a_2 =mg sin β[M+m(1−cos β)]  ⇒a_2 =((mg sin β[M+m(1−cos β)])/((m+m_0 )(M+m sin^2  β)+m_0 m(1−cos β)^2 ))  ⇒T=((m_0 m[M+m(1−cos β)]g sin β)/((m+m_0 )(M+m sin^2  β)+m_0 m(1−cos β)^2 ))](Q47352.png) | ||
| 
 | ||
| Commented by ajfour last updated on 09/Nov/18 | ||
|  | ||
| Commented by ajfour last updated on 09/Nov/18 | ||
|  | ||
| Answered by ajfour last updated on 09/Nov/18 | ||
| ![T=(M+m)A−m(A+a_0 )cos β     = m_0 a_0   mgsin β−T = m[(A+a_0 )−Acos β]  Adding  ⇒ mgsin β=ma_0 (1−cos β)+MA                             +2mA(1−cos β)  ⇒ mgsin β=ma_0 (1−cos β)             +A[M+2m(1−cos β)]    ⇒ mgsin β=ma_0 (1−cos β)     +((a_0 (m_0 +mcos β)[M+2m(1−cos β))/(M+m(1−cos β)))    a_0 =((mgsin β[M+m(1−cos β)])/(m(1−cos β)[M+m(1−cos β)]+(m_0 +mcos β)[M+2m(1−cos β)]))  T= ((mm_0 gsin β[M+m(1−cos β)])/(m(1−cos β)[M+m(1−cos β)]+(m_0 +mcos β)[M+2m(1−cos β)]))  If m=1kg  , m_0 = 2kg , M=3kg    and  β = tan^(−1) (4/3)  T = ((20×(4/5)(3+(2/5)))/((2/5)(3+(2/5))+(2+(3/5))(3+(4/5))))      = ((80×17)/(34+13×19)) = ((80×17)/(281)) N .](Q47372.png) | ||
| 
 | ||