Question and Answers Forum

All Questions      Topic List

Limits Questions

Previous in All Question      Next in All Question      

Previous in Limits      Next in Limits      

Question Number 47070 by Meritguide1234 last updated on 04/Nov/18

Commented by maxmathsup by imad last updated on 04/Nov/18

let  S(x)=Σ_(n=0) ^∞  ((cos(nx))/(n!)) ⇒S(x) =Re(Σ_(n=0) ^∞  (e^(inx) /(n!))) but  Σ_(n=0) ^∞  (e^(inx) /(n!)) =e^(ix)  =Σ_(n=0) ^∞   (((e^(ix) )^n )/(n!)) =e^e^(ix)   =e^(cosx +isinx)  =e^(cosx) {cos(sinx)+isin(sinx)}  ⇒ S(x) =e^(cosx)  .cos(sinx) and Σ_(n=0) ^∞  ((cos(((πn)/6)))/(n!)) = S((π/6)) =e^((√3)/2)  cos((1/2)) .

$${let}\:\:{S}\left({x}\right)=\sum_{{n}=\mathrm{0}} ^{\infty} \:\frac{{cos}\left({nx}\right)}{{n}!}\:\Rightarrow{S}\left({x}\right)\:={Re}\left(\sum_{{n}=\mathrm{0}} ^{\infty} \:\frac{{e}^{{inx}} }{{n}!}\right)\:{but} \\ $$$$\sum_{{n}=\mathrm{0}} ^{\infty} \:\frac{{e}^{{inx}} }{{n}!}\:={e}^{{ix}} \:=\sum_{{n}=\mathrm{0}} ^{\infty} \:\:\frac{\left({e}^{{ix}} \right)^{{n}} }{{n}!}\:={e}^{{e}^{{ix}} } \:={e}^{{cosx}\:+{isinx}} \:={e}^{{cosx}} \left\{{cos}\left({sinx}\right)+{isin}\left({sinx}\right)\right\} \\ $$$$\Rightarrow\:{S}\left({x}\right)\:={e}^{{cosx}} \:.{cos}\left({sinx}\right)\:{and}\:\sum_{{n}=\mathrm{0}} ^{\infty} \:\frac{{cos}\left(\frac{\pi{n}}{\mathrm{6}}\right)}{{n}!}\:=\:{S}\left(\frac{\pi}{\mathrm{6}}\right)\:={e}^{\frac{\sqrt{\mathrm{3}}}{\mathrm{2}}} \:{cos}\left(\frac{\mathrm{1}}{\mathrm{2}}\right)\:. \\ $$

Commented by Meritguide1234 last updated on 04/Nov/18

creative approach

$${creative}\:{approach} \\ $$

Terms of Service

Privacy Policy

Contact: info@tinkutara.com