Question and Answers Forum

All Questions      Topic List

Geometry Questions

Previous in All Question      Next in All Question      

Previous in Geometry      Next in Geometry      

Question Number 46889 by ajfour last updated on 02/Nov/18

Commented by ajfour last updated on 02/Nov/18

Q.46611 (Alternate approach)

$${Q}.\mathrm{46611}\:\left({Alternate}\:{approach}\right) \\ $$

Answered by ajfour last updated on 02/Nov/18

n^�  = cos θ(sin αi^� +cos αj^� )+sin θk^�   r_M ^� =(hi^� +kj^� )−Rsin θ(sin αi^� +cos αj^� )                                +Rcos θk^�   asin α = d  bcos α = d  ctan θ = d     y_P = 0   &  [((n^� ×(ck^� −ai^� ))/(√(c^2 +a^2 )))]_y = (r_P ^� −r_M ^� )_y   ⇒  −R[((ccos θsin α+asin θ)/(√(a^2 +c^2 )))]                  = −k+Rsin θcos α   ...(i)     x_Q =0  &     [(((ck^� −bj^� )×n^� )/(√(b^2 +c^2 )))]_x =(r_Q ^� −r_M ^� )_x   ⇒ −R[((ccos θcos α+bsin θ)/(√(b^2 +c^2 )))]              = −h+Rsin θsin α    ....(ii)    From (i)&(ii), we shall obtain    α and θ ;  using  asin α = d  bcos α = d  ctan θ = d    , in eqs. (i) & (ii)   ((R[((cos^2 θ)/(sin θ))sin α+((sin θ)/(sin α))])/(√((1/(sin^2 α))+((cos^2 θ)/(sin^2 θ)))))=k−Rsin θcos α  similarly  ((R[((cos^2 θ)/(sin θ))cos α+((sin θ)/(cos α))])/(√((1/(cos^2 α))+((cos^2 θ)/(sin^2 θ)))))=h−Rsin θsin α  ________________________  rearranging gives  R(√(sin^2 θ+sin^2 αcos^2 θ))               = k−Rsin θcos α    ...(A)  R(√(sin^2 θ+cos^2 θcos^2 α))              = h−Rsin θsin α    ....(B)  ________________________    squaring and adding (A)&(B)     2R^2 sin^2 θ+R^2 cos^2 θ = h^2 +k^2 +       R^2 sin^2 θ−2Rsin θ(hsin α+kcos α)  ⇒ 2Rsin θ=((h^2 +k^2 −R^2 )/(hsin α+kcos α))  ..(I)  Changing (A) to  R^2 sin^2 θcos^2 α+R^2 sin^2 α =                 (k−Rsin θcos α)^2   Now let   Rsin θcos α = t  ⇒  t^2 +R^2 sin^2 α=k^2 +t^2 −2kt  ⇒ 2t=((k^2 −R^2 sin^2 α)/k)  Now using (I):  ⇒ 2Rsin θ = (k/(cos α))−((R^2 sin^2 α)/(kcos α))  ⇒ ((h^2 +k^2 −R^2 )/(hsin α+kcos α))=((k^2 −R^2 sin^2 α)/(kcos α))  ⇒ ((h^2 −R^2 cos^2 α)/(hsin α)) = ((k^2 −R^2 sin^2 α)/(kcos α))  ________________________  let  m=tan α  ⇒ ((h^2 (1+m^2 )−R^2 )/(k^2 (1+m^2 )−R^2 m^2 )) = ((mh)/k)  this eq. provides for 𝛂 ; and then  from (I):       θ=sin^(−1) [((h^2 +k^2 −R^2 )/(2R(hsin α+kcos α)))]   ________________________.

$$\hat {{n}}\:=\:\mathrm{cos}\:\theta\left(\mathrm{sin}\:\alpha\hat {{i}}+\mathrm{cos}\:\alpha\hat {{j}}\right)+\mathrm{sin}\:\theta\hat {{k}} \\ $$$$\bar {{r}}_{{M}} =\left({h}\hat {{i}}+{k}\hat {{j}}\right)−{R}\mathrm{sin}\:\theta\left(\mathrm{sin}\:\alpha\hat {{i}}+\mathrm{cos}\:\alpha\hat {{j}}\right) \\ $$$$\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:+{R}\mathrm{cos}\:\theta\hat {{k}} \\ $$$${a}\mathrm{sin}\:\alpha\:=\:{d} \\ $$$${b}\mathrm{cos}\:\alpha\:=\:{d} \\ $$$${c}\mathrm{tan}\:\theta\:=\:{d} \\ $$$$\:\:\:{y}_{{P}} =\:\mathrm{0}\: \\ $$$$\&\:\:\left[\frac{\hat {{n}}×\left({c}\hat {{k}}−{a}\hat {{i}}\right)}{\sqrt{{c}^{\mathrm{2}} +{a}^{\mathrm{2}} }}\right]_{{y}} =\:\left(\bar {{r}}_{{P}} −\bar {{r}}_{{M}} \right)_{{y}} \\ $$$$\Rightarrow\:\:−{R}\left[\frac{{c}\mathrm{cos}\:\theta\mathrm{sin}\:\alpha+{a}\mathrm{sin}\:\theta}{\sqrt{{a}^{\mathrm{2}} +{c}^{\mathrm{2}} }}\right] \\ $$$$\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:=\:−{k}+{R}\mathrm{sin}\:\theta\mathrm{cos}\:\alpha\:\:\:...\left({i}\right) \\ $$$$\:\:\:{x}_{{Q}} =\mathrm{0}\:\:\& \\ $$$$\:\:\:\left[\frac{\left({c}\hat {{k}}−{b}\hat {{j}}\right)×\hat {{n}}}{\sqrt{{b}^{\mathrm{2}} +{c}^{\mathrm{2}} }}\right]_{{x}} =\left(\bar {{r}}_{{Q}} −\bar {{r}}_{{M}} \right)_{{x}} \\ $$$$\Rightarrow\:−{R}\left[\frac{{c}\mathrm{cos}\:\theta\mathrm{cos}\:\alpha+{b}\mathrm{sin}\:\theta}{\sqrt{{b}^{\mathrm{2}} +{c}^{\mathrm{2}} }}\right] \\ $$$$\:\:\:\:\:\:\:\:\:\:\:\:=\:−{h}+{R}\mathrm{sin}\:\theta\mathrm{sin}\:\alpha\:\:\:\:....\left({ii}\right) \\ $$$$\:\:{From}\:\left({i}\right)\&\left({ii}\right),\:{we}\:{shall}\:{obtain} \\ $$$$\:\:\alpha\:{and}\:\theta\:;\:\:{using} \\ $$$${a}\mathrm{sin}\:\alpha\:=\:{d} \\ $$$${b}\mathrm{cos}\:\alpha\:=\:{d} \\ $$$${c}\mathrm{tan}\:\theta\:=\:{d}\:\:\:\:,\:{in}\:{eqs}.\:\left({i}\right)\:\&\:\left({ii}\right) \\ $$$$\:\frac{{R}\left[\frac{\mathrm{cos}\:^{\mathrm{2}} \theta}{\mathrm{sin}\:\theta}\mathrm{sin}\:\alpha+\frac{\mathrm{sin}\:\theta}{\mathrm{sin}\:\alpha}\right]}{\sqrt{\frac{\mathrm{1}}{\mathrm{sin}\:^{\mathrm{2}} \alpha}+\frac{\mathrm{cos}\:^{\mathrm{2}} \theta}{\mathrm{sin}\:^{\mathrm{2}} \theta}}}={k}−{R}\mathrm{sin}\:\theta\mathrm{cos}\:\alpha \\ $$$${similarly} \\ $$$$\frac{{R}\left[\frac{\mathrm{cos}\:^{\mathrm{2}} \theta}{\mathrm{sin}\:\theta}\mathrm{cos}\:\alpha+\frac{\mathrm{sin}\:\theta}{\mathrm{cos}\:\alpha}\right]}{\sqrt{\frac{\mathrm{1}}{\mathrm{cos}\:^{\mathrm{2}} \alpha}+\frac{\mathrm{cos}\:^{\mathrm{2}} \theta}{\mathrm{sin}\:^{\mathrm{2}} \theta}}}={h}−{R}\mathrm{sin}\:\theta\mathrm{sin}\:\alpha \\ $$$$\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_ \\ $$$${rearranging}\:{gives} \\ $$$${R}\sqrt{\mathrm{sin}\:^{\mathrm{2}} \theta+\mathrm{sin}\:^{\mathrm{2}} \alpha\mathrm{cos}\:^{\mathrm{2}} \theta} \\ $$$$\:\:\:\:\:\:\:\:\:\:\:\:\:=\:{k}−{R}\mathrm{sin}\:\theta\mathrm{cos}\:\alpha\:\:\:\:...\left({A}\right) \\ $$$${R}\sqrt{\mathrm{sin}\:^{\mathrm{2}} \theta+\mathrm{cos}\:^{\mathrm{2}} \theta\mathrm{cos}\:^{\mathrm{2}} \alpha} \\ $$$$\:\:\:\:\:\:\:\:\:\:\:\:=\:{h}−{R}\mathrm{sin}\:\theta\mathrm{sin}\:\alpha\:\:\:\:....\left({B}\right) \\ $$$$\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_ \\ $$$$\:\:{squaring}\:{and}\:{adding}\:\left({A}\right)\&\left({B}\right) \\ $$$$\:\:\:\mathrm{2}{R}^{\mathrm{2}} \mathrm{sin}\:^{\mathrm{2}} \theta+{R}^{\mathrm{2}} \mathrm{cos}\:^{\mathrm{2}} \theta\:=\:{h}^{\mathrm{2}} +{k}^{\mathrm{2}} + \\ $$$$\:\:\:\:\:{R}^{\mathrm{2}} \mathrm{sin}\:^{\mathrm{2}} \theta−\mathrm{2}{R}\mathrm{sin}\:\theta\left({h}\mathrm{sin}\:\alpha+{k}\mathrm{cos}\:\alpha\right) \\ $$$$\Rightarrow\:\mathrm{2}{R}\mathrm{sin}\:\theta=\frac{{h}^{\mathrm{2}} +{k}^{\mathrm{2}} −{R}^{\mathrm{2}} }{{h}\mathrm{sin}\:\alpha+{k}\mathrm{cos}\:\alpha}\:\:..\left({I}\right) \\ $$$${Changing}\:\left({A}\right)\:{to} \\ $$$${R}^{\mathrm{2}} \mathrm{sin}\:^{\mathrm{2}} \theta\mathrm{cos}\:^{\mathrm{2}} \alpha+{R}^{\mathrm{2}} \mathrm{sin}\:^{\mathrm{2}} \alpha\:= \\ $$$$\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\left({k}−{R}\mathrm{sin}\:\theta\mathrm{cos}\:\alpha\right)^{\mathrm{2}} \\ $$$${Now}\:{let}\:\:\:{R}\mathrm{sin}\:\theta\mathrm{cos}\:\alpha\:=\:{t} \\ $$$$\Rightarrow\:\:{t}^{\mathrm{2}} +{R}^{\mathrm{2}} \mathrm{sin}\:^{\mathrm{2}} \alpha={k}^{\mathrm{2}} +{t}^{\mathrm{2}} −\mathrm{2}{kt} \\ $$$$\Rightarrow\:\mathrm{2}{t}=\frac{{k}^{\mathrm{2}} −{R}^{\mathrm{2}} \mathrm{sin}\:^{\mathrm{2}} \alpha}{{k}} \\ $$$${Now}\:{using}\:\left({I}\right): \\ $$$$\Rightarrow\:\mathrm{2}{R}\mathrm{sin}\:\theta\:=\:\frac{{k}}{\mathrm{cos}\:\alpha}−\frac{{R}^{\mathrm{2}} \mathrm{sin}\:^{\mathrm{2}} \alpha}{{k}\mathrm{cos}\:\alpha} \\ $$$$\Rightarrow\:\frac{{h}^{\mathrm{2}} +{k}^{\mathrm{2}} −{R}^{\mathrm{2}} }{{h}\mathrm{sin}\:\alpha+{k}\mathrm{cos}\:\alpha}=\frac{{k}^{\mathrm{2}} −{R}^{\mathrm{2}} \mathrm{sin}\:^{\mathrm{2}} \alpha}{{k}\mathrm{cos}\:\alpha} \\ $$$$\Rightarrow\:\frac{{h}^{\mathrm{2}} −{R}^{\mathrm{2}} \mathrm{cos}\:^{\mathrm{2}} \alpha}{{h}\mathrm{sin}\:\alpha}\:=\:\frac{{k}^{\mathrm{2}} −{R}^{\mathrm{2}} \mathrm{sin}\:^{\mathrm{2}} \alpha}{{k}\mathrm{cos}\:\alpha} \\ $$$$\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_ \\ $$$${let}\:\:{m}=\mathrm{tan}\:\alpha \\ $$$$\Rightarrow\:\frac{{h}^{\mathrm{2}} \left(\mathrm{1}+{m}^{\mathrm{2}} \right)−{R}^{\mathrm{2}} }{{k}^{\mathrm{2}} \left(\mathrm{1}+{m}^{\mathrm{2}} \right)−{R}^{\mathrm{2}} {m}^{\mathrm{2}} }\:=\:\frac{{mh}}{{k}} \\ $$$${this}\:{eq}.\:{provides}\:{for}\:\boldsymbol{\alpha}\:;\:{and}\:{then} \\ $$$${from}\:\left({I}\right): \\ $$$$\:\:\:\:\:\theta=\mathrm{sin}^{−\mathrm{1}} \left[\frac{{h}^{\mathrm{2}} +{k}^{\mathrm{2}} −{R}^{\mathrm{2}} }{\mathrm{2}{R}\left({h}\mathrm{sin}\:\alpha+{k}\mathrm{cos}\:\alpha\right)}\right]\: \\ $$$$\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_. \\ $$

Commented by ajfour last updated on 02/Nov/18

In excellent agreement with  your result Sir, coz they are same.

$${In}\:{excellent}\:{agreement}\:{with} \\ $$$${your}\:{result}\:{Sir},\:{coz}\:{they}\:{are}\:{same}. \\ $$

Commented by MrW3 last updated on 02/Nov/18

yes, sir.  it′s a marvellous job what you did!  really nice method!

$${yes},\:{sir}. \\ $$$${it}'{s}\:{a}\:{marvellous}\:{job}\:{what}\:{you}\:{did}! \\ $$$${really}\:{nice}\:{method}! \\ $$

Commented by MrW3 last updated on 02/Nov/18

You can remeber that I was unsure if  the position of the ring is unique. Now  I know the position of the ring is  unique with the given point G. But  with some values of R there can be  two or three possible positions for  the ring.

$${You}\:{can}\:{remeber}\:{that}\:{I}\:{was}\:{unsure}\:{if} \\ $$$${the}\:{position}\:{of}\:{the}\:{ring}\:{is}\:{unique}.\:{Now} \\ $$$${I}\:{know}\:{the}\:{position}\:{of}\:{the}\:{ring}\:{is} \\ $$$${unique}\:{with}\:{the}\:{given}\:{point}\:{G}.\:{But} \\ $$$${with}\:{some}\:{values}\:{of}\:{R}\:{there}\:{can}\:{be} \\ $$$${two}\:{or}\:{three}\:{possible}\:{positions}\:{for} \\ $$$${the}\:{ring}. \\ $$

Commented by ajfour last updated on 02/Nov/18

yes sir, thank you for solving it  by two methods; but i could  have guessed wrongly  at least   two roots for α as complex..  every time.

$${yes}\:{sir},\:{thank}\:{you}\:{for}\:{solving}\:{it} \\ $$$${by}\:{two}\:{methods};\:{but}\:{i}\:{could} \\ $$$${have}\:{guessed}\:{wrongly}\:\:{at}\:{least} \\ $$$$\:{two}\:{roots}\:{for}\:\alpha\:{as}\:{complex}.. \\ $$$${every}\:{time}. \\ $$

Commented by MrW3 last updated on 02/Nov/18

there could be three positive roots or  one positive and two negative or two  positive and one negative roots. that  means we can get: one position, two  positions or three positions for the  ring.

$${there}\:{could}\:{be}\:{three}\:{positive}\:{roots}\:{or} \\ $$$${one}\:{positive}\:{and}\:{two}\:{negative}\:{or}\:{two} \\ $$$${positive}\:{and}\:{one}\:{negative}\:{roots}.\:{that} \\ $$$${means}\:{we}\:{can}\:{get}:\:{one}\:{position},\:{two} \\ $$$${positions}\:{or}\:{three}\:{positions}\:{for}\:{the} \\ $$$${ring}. \\ $$

Commented by peter frank last updated on 02/Nov/18

pls help Q 46838,46829

$$\mathrm{pls}\:\mathrm{help}\:\mathrm{Q}\:\mathrm{46838},\mathrm{46829} \\ $$

Terms of Service

Privacy Policy

Contact: info@tinkutara.com