Question and Answers Forum

All Questions      Topic List

Geometry Questions

Previous in All Question      Next in All Question      

Previous in Geometry      Next in Geometry      

Question Number 46546 by ajfour last updated on 28/Oct/18

Commented by ajfour last updated on 28/Oct/18

A circular ring of radius R, rests  against two adjacent walls and  ground. If G(rcos α, rsin α, 0),  find coordinates of P and Q  (points of contact of ring with  the walls).

$${A}\:{circular}\:{ring}\:{of}\:{radius}\:{R},\:{rests} \\ $$$${against}\:{two}\:{adjacent}\:{walls}\:{and} \\ $$$${ground}.\:{If}\:{G}\left({r}\mathrm{cos}\:\alpha,\:{r}\mathrm{sin}\:\alpha,\:\mathrm{0}\right), \\ $$$${find}\:{coordinates}\:{of}\:{P}\:{and}\:{Q} \\ $$$$\left({points}\:{of}\:{contact}\:{of}\:{ring}\:{with}\right. \\ $$$$\left.{the}\:{walls}\right). \\ $$

Commented by ajfour last updated on 28/Oct/18

Commented by MrW3 last updated on 28/Oct/18

Commented by MrW3 last updated on 28/Oct/18

I think there is no unique solution.  Each triangle ΔABC whose inscribed  circle′s radius is R and which fulfills  following condition represents a  solution.  AG×(√(1−(((r cos α)/(BG)))^2 ))=r sin θ

$${I}\:{think}\:{there}\:{is}\:{no}\:{unique}\:{solution}. \\ $$$${Each}\:{triangle}\:\Delta{ABC}\:{whose}\:{inscribed} \\ $$$${circle}'{s}\:{radius}\:{is}\:{R}\:{and}\:{which}\:{fulfills} \\ $$$${following}\:{condition}\:{represents}\:{a} \\ $$$${solution}. \\ $$$${AG}×\sqrt{\mathrm{1}−\left(\frac{{r}\:\mathrm{cos}\:\alpha}{{BG}}\right)^{\mathrm{2}} }={r}\:\mathrm{sin}\:\theta \\ $$

Commented by ajfour last updated on 29/Oct/18

But i intuitively feel it locked  if G  and radius R given and  that it (ring) rests against both  walls, Sir.

$${But}\:{i}\:{intuitively}\:{feel}\:{it}\:{locked} \\ $$$${if}\:{G}\:\:{and}\:{radius}\:{R}\:{given}\:{and} \\ $$$${that}\:{it}\:\left({ring}\right)\:{rests}\:{against}\:{both} \\ $$$${walls},\:{Sir}. \\ $$

Commented by MrW3 last updated on 29/Oct/18

I think if the walls are not frictionless,  the ring can stay at point G and has  different equilibium positions.

$${I}\:{think}\:{if}\:{the}\:{walls}\:{are}\:{not}\:{frictionless}, \\ $$$${the}\:{ring}\:{can}\:{stay}\:{at}\:{point}\:{G}\:{and}\:{has} \\ $$$${different}\:{equilibium}\:{positions}. \\ $$

Commented by MrW3 last updated on 29/Oct/18

Terms of Service

Privacy Policy

Contact: info@tinkutara.com