Question and Answers Forum

All Questions      Topic List

Integration Questions

Previous in All Question      Next in All Question      

Previous in Integration      Next in Integration      

Question Number 46252 by rahul 19 last updated on 23/Oct/18

Answered by MJS last updated on 23/Oct/18

r=(√(x^2 +y^2 ))=(√((cos^2  θ +sin^2  θ)cos^2  4θ))=∣cos 4θ∣  ⇒ A)

$${r}=\sqrt{{x}^{\mathrm{2}} +{y}^{\mathrm{2}} }=\sqrt{\left(\mathrm{cos}^{\mathrm{2}} \:\theta\:+\mathrm{sin}^{\mathrm{2}} \:\theta\right)\mathrm{cos}^{\mathrm{2}} \:\mathrm{4}\theta}=\mid\mathrm{cos}\:\mathrm{4}\theta\mid \\ $$$$\left.\Rightarrow\:{A}\right) \\ $$

Commented by rahul 19 last updated on 23/Oct/18

thanks sir.

$${thanks}\:{sir}. \\ $$

Answered by ajfour last updated on 23/Oct/18

r = (√(x^2 +y^2 )) = ∣cos 4θ∣  r=r_(max) =1 ⇒ cos 4θ = ±1  for   θ ∈ [0, 2π]     θ= 0, (π/4), (π/2), ((3π)/4), π,((5π)/4), ((3π)/2),((7π)/4)  hence  (A).

$${r}\:=\:\sqrt{{x}^{\mathrm{2}} +{y}^{\mathrm{2}} }\:=\:\mid\mathrm{cos}\:\mathrm{4}\theta\mid \\ $$$${r}={r}_{{max}} =\mathrm{1}\:\Rightarrow\:\mathrm{cos}\:\mathrm{4}\theta\:=\:\pm\mathrm{1} \\ $$$${for}\:\:\:\theta\:\in\:\left[\mathrm{0},\:\mathrm{2}\pi\right] \\ $$$$\:\:\:\theta=\:\mathrm{0},\:\frac{\pi}{\mathrm{4}},\:\frac{\pi}{\mathrm{2}},\:\frac{\mathrm{3}\pi}{\mathrm{4}},\:\pi,\frac{\mathrm{5}\pi}{\mathrm{4}},\:\frac{\mathrm{3}\pi}{\mathrm{2}},\frac{\mathrm{7}\pi}{\mathrm{4}} \\ $$$${hence}\:\:\left({A}\right). \\ $$

Commented by rahul 19 last updated on 23/Oct/18

ok sir...

$${ok}\:{sir}... \\ $$

Commented by rahul 19 last updated on 23/Oct/18

thanks sir.

$${thanks}\:{sir}. \\ $$

Commented by rahul 19 last updated on 23/Oct/18

Why option (B) is wrong ?

$${Why}\:{option}\:\left({B}\right)\:{is}\:{wrong}\:? \\ $$

Commented by MJS last updated on 23/Oct/18

simply because at θ=(π/4) in picture B r=0 which  cannot be as ∣cos ((4π)/4)∣=1

$$\mathrm{simply}\:\mathrm{because}\:\mathrm{at}\:\theta=\frac{\pi}{\mathrm{4}}\:\mathrm{in}\:\mathrm{picture}\:\mathrm{B}\:{r}=\mathrm{0}\:\mathrm{which} \\ $$$$\mathrm{cannot}\:\mathrm{be}\:\mathrm{as}\:\mid\mathrm{cos}\:\frac{\mathrm{4}\pi}{\mathrm{4}}\mid=\mathrm{1} \\ $$

Terms of Service

Privacy Policy

Contact: info@tinkutara.com