Question and Answers Forum

All Questions      Topic List

Relation and Functions Questions

Previous in All Question      Next in All Question      

Previous in Relation and Functions      Next in Relation and Functions      

Question Number 42278 by rish@bh last updated on 21/Aug/18

Commented by tanmay.chaudhury50@gmail.com last updated on 24/Aug/18

excellent problem...  Ψ=B^→ .A^→   (dΨ/dt)=B^→ .(dA^→ /dt)+(dB^→ /dt).A^→       B=magnetic flux  A^→ =area vector  here(dA^→ /dt)=0since no relative motion between B^→   and area vector A^→     (dΨ/dt)=(dB/dt).A^→   −e=(dΨ/dt)=(dB^→ /dt).A^→   now what is the value of A^→   let me think...wait...

$${excellent}\:{problem}... \\ $$$$\Psi=\overset{\rightarrow} {{B}}.\overset{\rightarrow} {{A}} \\ $$$$\frac{{d}\Psi}{{dt}}=\overset{\rightarrow} {{B}}.\frac{{d}\overset{\rightarrow} {{A}}}{{dt}}+\frac{{d}\overset{\rightarrow} {{B}}}{{dt}}.\overset{\rightarrow} {{A}}\:\:\:\:\:\:{B}={magnetic}\:{flux} \\ $$$$\overset{\rightarrow} {{A}}={area}\:{vector} \\ $$$${here}\frac{{d}\overset{\rightarrow} {{A}}}{{dt}}=\mathrm{0}{since}\:{no}\:{relative}\:{motion}\:{between}\:\overset{\rightarrow} {{B}} \\ $$$${and}\:{area}\:{vector}\:\overset{\rightarrow} {{A}} \\ $$$$ \\ $$$$\frac{{d}\Psi}{{dt}}=\frac{{dB}}{{dt}}.\overset{\rightarrow} {{A}} \\ $$$$−{e}=\frac{{d}\Psi}{{dt}}=\frac{{d}\overset{\rightarrow} {{B}}}{{dt}}.\overset{\rightarrow} {{A}} \\ $$$${now}\:{what}\:{is}\:{the}\:{value}\:{of}\:\overset{\rightarrow} {{A}} \\ $$$${let}\:{me}\:{think}...{wait}... \\ $$

Terms of Service

Privacy Policy

Contact: info@tinkutara.com