Question Number 40306 by behi83417@gmail.com last updated on 19/Jul/18 | ||
![]() | ||
Commented by MJS last updated on 20/Jul/18 | ||
![]() | ||
$$\mathrm{can}\:\mathrm{we}\:\mathrm{show}\:\mathrm{the}\:\mathrm{following}? \\ $$$$\frac{\mathrm{3}}{\mathrm{2}}\leqslant\frac{{x}^{\mathrm{2}} +{yz}}{{y}^{\mathrm{2}} +{z}^{\mathrm{2}} }+\frac{{y}^{\mathrm{2}} +{xz}}{{x}^{\mathrm{2}} +{z}^{\mathrm{2}} }+\frac{{z}^{\mathrm{2}} +{xy}}{{x}^{\mathrm{2}} +{y}^{\mathrm{2}} }\leqslant\frac{\mathrm{21}}{\mathrm{10}} \\ $$ | ||
Commented by MJS last updated on 20/Jul/18 | ||
![]() | ||
$${f}\left({x},{y},{z}\right)=\frac{{x}^{\mathrm{2}} +{yz}}{{y}^{\mathrm{2}} +{z}^{\mathrm{2}} }+\frac{{y}^{\mathrm{2}} +{xz}}{{x}^{\mathrm{2}} +{z}^{\mathrm{2}} }+\frac{{z}^{\mathrm{2}} +{xy}}{{x}^{\mathrm{2}} +{y}^{\mathrm{2}} } \\ $$$${z}=−\left({x}+{y}\right) \\ $$$${f}\left({x},{y},−\left({x}+{y}\right)\right)= \\ $$$$={g}\left({x},{y}\right)=\frac{\mathrm{3}\left({x}^{\mathrm{6}} +{y}^{\mathrm{6}} +\mathrm{3}{xy}\left({x}^{\mathrm{4}} +{y}^{\mathrm{4}} \right)+\mathrm{8}{x}^{\mathrm{2}} {y}^{\mathrm{2}} \left({x}^{\mathrm{2}} +{y}^{\mathrm{2}} \right)+\mathrm{11}{x}^{\mathrm{3}} {y}^{\mathrm{3}} \right)}{\left({x}^{\mathrm{2}} +{y}^{\mathrm{2}} \right)\left(\left({x}+{y}\right)^{\mathrm{2}} +{x}^{\mathrm{2}} \right)\left(\left({x}+{y}\right)^{\mathrm{2}} +{y}^{\mathrm{2}} \right)} \\ $$$$\frac{{d}}{{dx}}\left[{g}\left({x},{y}\right)\right]=−\frac{\mathrm{15}{xy}^{\mathrm{2}} \left(\mathrm{2}\left({x}^{\mathrm{8}} −{y}^{\mathrm{8}} \right)+\mathrm{9}{xy}\left({x}^{\mathrm{6}} −{y}^{\mathrm{6}} \right)+\mathrm{16}{x}^{\mathrm{2}} {y}^{\mathrm{2}} \left({x}^{\mathrm{4}} −{y}^{\mathrm{4}} \right)+\mathrm{14}{x}^{\mathrm{3}} {y}^{\mathrm{3}} \left({x}^{\mathrm{2}} −{y}^{\mathrm{2}} \right)\right)}{\left({x}^{\mathrm{2}} +{y}^{\mathrm{2}} \right)^{\mathrm{2}} \left(\left({x}+_{} {y}\right)^{\mathrm{2}} +{x}^{\mathrm{2}} \right)^{\mathrm{2}} \left(\left({x}+{y}\right)^{\mathrm{2}} +{y}^{\mathrm{2}} \right)^{\mathrm{2}} } \\ $$$$\frac{{d}}{{dx}}\left[{g}\left({x},{y}\right)\right]=\mathrm{0}\:\Rightarrow\:{x}=\mathrm{0}\:\vee\:{y}=\mathrm{0}\:\vee \\ $$$$\mathrm{2}\left({x}^{\mathrm{8}} −{y}^{\mathrm{8}} \right)+\mathrm{9}{xy}\left({x}^{\mathrm{6}} −{y}^{\mathrm{6}} \right)+\mathrm{16}{x}^{\mathrm{2}} {y}^{\mathrm{2}} \left({x}^{\mathrm{4}} −{y}^{\mathrm{4}} \right)+\mathrm{14}{x}^{\mathrm{3}} {y}^{\mathrm{3}} \left({x}^{\mathrm{2}} −{y}^{\mathrm{2}} \right)=\mathrm{0} \\ $$$${x}=\left\{−\mathrm{2}{y};\:−{y};\:−\frac{{y}}{\mathrm{2}};\:\mathrm{0};\:{y};\:−\frac{{y}}{\mathrm{2}}\left(\mathrm{1}+\mathrm{i}\sqrt{\mathrm{3}}\right);\:−\frac{{y}}{\mathrm{2}}\left(\mathrm{1}−\mathrm{i}\sqrt{\mathrm{3}}\right)\right\} \\ $$$${f}\left({x},\:{y},\:{z}\right)=\left\{\frac{\mathrm{21}}{\mathrm{10}};\:\frac{\mathrm{3}}{\mathrm{2}};\:\frac{\mathrm{21}}{\mathrm{10}};\:\frac{\mathrm{3}}{\mathrm{2}};\:\frac{\mathrm{21}}{\mathrm{10}};\:−\mathrm{6};\:−\mathrm{6}\right\} \\ $$$$\mathrm{so}\:\mathrm{these}\:\mathrm{are}\:\mathrm{the}\:\mathrm{minima}\:\mathrm{and}\:\mathrm{maxima}\:\mathrm{of}\:{f}\left({x},\:{y},\:{z}\right) \\ $$ | ||
Answered by tanmay.chaudhury50@gmail.com last updated on 19/Jul/18 | ||
![]() | ||
$${k}=\frac{{xy}}{{x}^{\mathrm{2}} +{y}^{\mathrm{2}} }+\frac{{yz}}{{y}^{\mathrm{2}} +{z}^{\mathrm{2}} }+\frac{{xz}}{{x}^{\mathrm{2}} +{z}^{\mathrm{2}} }+\frac{{z}^{\mathrm{2}} }{{x}^{\mathrm{2}} +{y}^{\mathrm{2}} }+\frac{{x}^{\mathrm{2}} }{{y}^{\mathrm{2}} +{z}^{\mathrm{2}} }+\frac{{y}^{\mathrm{2}} }{{x}^{\mathrm{2}} +{z}^{\mathrm{2}} } \\ $$$$\frac{{x}^{\mathrm{2}} +{y}^{\mathrm{2}} }{\mathrm{2}}\geqslant\sqrt{{x}^{\mathrm{2}} {y}^{\mathrm{2}} } \\ $$$$\frac{{x}^{\mathrm{2}} +{y}^{\mathrm{2}} }{{xy}}\geqslant\mathrm{2}\:\:\:{so}\:\:\:\frac{{xy}}{{x}^{\mathrm{2}} +{y}^{\mathrm{2}} }\leqslant\frac{\mathrm{1}}{\mathrm{2}} \\ $$$$\frac{{z}^{\mathrm{2}} }{{x}^{\mathrm{2}} +{y}^{\mathrm{2}} }\:\:\:\:\:\:{z}=−\left({x}+{y}\right)\:\:{so}\:{z}^{\mathrm{2}} ={x}^{\mathrm{2}} +{y}^{\mathrm{2}} +\mathrm{2}{xy} \\ $$$$\frac{{z}^{\mathrm{2}} }{{x}^{\mathrm{2}} +{y}^{\mathrm{2}} }=\mathrm{1}+\frac{\mathrm{2}{xy}}{{x}^{\mathrm{2}} +{y}^{\mathrm{2}} } \\ $$$$\mathrm{1}+\frac{\mathrm{2}{xy}}{{x}^{\mathrm{2}} +{y}^{\mathrm{2}} }\leqslant\mathrm{2} \\ $$$${k}\leqslant\frac{\mathrm{1}}{\mathrm{2}}+\frac{\mathrm{1}}{\mathrm{2}}+\frac{\mathrm{1}}{\mathrm{2}}+\mathrm{2}+\mathrm{2}+\mathrm{2} \\ $$$${k}\leqslant\frac{\mathrm{15}}{\mathrm{2}} \\ $$$$ \\ $$$$ \\ $$ | ||
Answered by math1967 last updated on 19/Jul/18 | ||
![]() | ||
$${x},{y},{z}\in{R}\:\:\therefore\left({x}−{y}\right)^{\mathrm{2}} \geqslant\mathrm{0} \\ $$$$\left({y}−{z}\right)^{\mathrm{2}} \geqslant\mathrm{0},\left({z}−{x}\right)^{\mathrm{2}} \geqslant\mathrm{0} \\ $$$$\therefore{x}^{\mathrm{2}} +{y}^{\mathrm{2}} \geqslant\mathrm{2}{xy}\:.......\mathrm{1} \\ $$$${From}\:\mathrm{1}\:\:\frac{\mathrm{1}}{{x}^{\mathrm{2}} +{y}^{\mathrm{2}} }\leqslant\frac{\mathrm{1}}{\mathrm{2}{xy}}\:\:\: \\ $$$$\:\:\:\frac{{xy}}{{x}^{\mathrm{2}} +{y}^{\mathrm{2}} }\leqslant\frac{\mathrm{1}}{\mathrm{2}}\:......\left(\mathrm{2}\right) \\ $$$$ \\ $$$${Again}\:{x}+{y}+{z}=\mathrm{0} \\ $$$$\:\:\:\Rightarrow{x}^{\mathrm{2}} +{y}^{\mathrm{2}} +\mathrm{2}{xy}={z}^{\mathrm{2}} \\ $$$$\therefore{x}^{\mathrm{2}} +{y}^{\mathrm{2}} +\mathrm{3}{xy}={xy}+{z}^{\mathrm{2}} \: \\ $$$${From}\:\left(\mathrm{2}\right)\:\frac{\mathrm{3}{xy}}{{x}^{\mathrm{2}} +{y}^{\mathrm{2}} }\leqslant\frac{\mathrm{3}}{\mathrm{2}} \\ $$$$\:\:\:\mathrm{1}+\frac{\mathrm{3}{xy}}{{x}^{\mathrm{2}} +{y}^{\mathrm{2}} }\leqslant\frac{\mathrm{5}}{\mathrm{2}} \\ $$$$\frac{{x}^{\mathrm{2}} +{y}^{\mathrm{2}} +\mathrm{3}{xy}}{{x}^{\mathrm{2}} +{y}^{\mathrm{2}} }\leqslant\frac{\mathrm{5}}{\mathrm{2}} \\ $$$$\frac{{xy}+{z}^{\mathrm{2}} }{{x}^{\mathrm{2}} +{y}^{\mathrm{2}} }\leqslant\frac{\mathrm{5}}{\mathrm{2}}\:\:\:\:\left[{x}^{\mathrm{2}} +{y}^{\mathrm{2}} +\mathrm{3}{xy}={xy}+{z}^{\mathrm{2}} \right] \\ $$$${similarly}\:\frac{{yz}+{x}^{\mathrm{2}} }{{y}^{\mathrm{2}} +{z}^{\mathrm{2}} }\leqslant\frac{\mathrm{5}}{\mathrm{2}} \\ $$$$\frac{{zx}+{y}^{\mathrm{2}} }{{z}^{\mathrm{2}} +{x}^{\mathrm{2}} }\leqslant\frac{\mathrm{5}}{\mathrm{2}} \\ $$$$\therefore\frac{{xy}+{z}^{\mathrm{2}} }{{x}^{\mathrm{2}} +{y}^{\mathrm{2}} }\:+\frac{{yz}+{x}^{\mathrm{2}} }{{y}^{\mathrm{2}} +{z}^{\mathrm{2}} }\:+\frac{{zx}+{y}^{\mathrm{2}} }{{z}^{\mathrm{2}} +{x}^{\mathrm{2}} }\leqslant\frac{\mathrm{15}}{\mathrm{2}} \\ $$$$ \\ $$ | ||