Question and Answers Forum

All Questions      Topic List

Algebra Questions

Previous in All Question      Next in All Question      

Previous in Algebra      Next in Algebra      

Question Number 31595 by Nayon.Sm last updated on 11/Mar/18

Commented by Rasheed.Sindhi last updated on 11/Mar/18

a=0,b=353

$${a}=\mathrm{0},{b}=\mathrm{353} \\ $$

Commented by Joel578 last updated on 11/Mar/18

if a ≠ b ≠ 0, is there any solutions?

$$\mathrm{if}\:{a}\:\neq\:{b}\:\neq\:\mathrm{0},\:\mathrm{is}\:\mathrm{there}\:\mathrm{any}\:\mathrm{solutions}? \\ $$

Answered by Rasheed.Sindhi last updated on 11/Mar/18

It can be proved that      m^2 +n^2 ,m^2 −n^2  & 2mn is a pathagorean  triplet for m,n∈N & m>n            m^2 +n^2 =353            a=m^2 −n^2             b=2mn            n^2 =353−m^2   For what values of m  353−m^2  is perfect  square? Recall  that 1≤m^2 ≤353⇒1 ≤m≤(√(353))=18  So testing 353−1^2 ,353−2^2 ,...,353−18^2   we ′ll find that m=17,n=8 .  m^2 −n^2 =17^2 −8^2 =225  2mn=2×17×8=272    272^2 +225^2 =353^2

$$\mathrm{It}\:\mathrm{can}\:\mathrm{be}\:\mathrm{proved}\:\mathrm{that}\:\:\:\: \\ $$$$\mathrm{m}^{\mathrm{2}} +\mathrm{n}^{\mathrm{2}} ,\mathrm{m}^{\mathrm{2}} −\mathrm{n}^{\mathrm{2}} \:\&\:\mathrm{2mn}\:\mathrm{is}\:\mathrm{a}\:\mathrm{pathagorean} \\ $$$$\mathrm{triplet}\:\mathrm{for}\:\mathrm{m},\mathrm{n}\in\mathbb{N}\:\&\:\mathrm{m}>\mathrm{n}\:\: \\ $$$$\:\:\:\:\:\:\:\:\mathrm{m}^{\mathrm{2}} +\mathrm{n}^{\mathrm{2}} =\mathrm{353} \\ $$$$\:\:\:\:\:\:\:\:\:\:\mathrm{a}=\mathrm{m}^{\mathrm{2}} −\mathrm{n}^{\mathrm{2}} \\ $$$$\:\:\:\:\:\:\:\:\:\:\mathrm{b}=\mathrm{2mn} \\ $$$$\:\:\:\:\:\:\:\:\:\:\mathrm{n}^{\mathrm{2}} =\mathrm{353}−\mathrm{m}^{\mathrm{2}} \\ $$$$\mathrm{For}\:\mathrm{what}\:\mathrm{values}\:\mathrm{of}\:\mathrm{m}\:\:\mathrm{353}−\mathrm{m}^{\mathrm{2}} \:\mathrm{is}\:\mathrm{perfect} \\ $$$$\mathrm{square}?\:\mathrm{Recall} \\ $$$$\mathrm{that}\:\mathrm{1}\leqslant\mathrm{m}^{\mathrm{2}} \leqslant\mathrm{353}\Rightarrow\mathrm{1}\:\leqslant\mathrm{m}\leqslant\sqrt{\mathrm{353}}=\mathrm{18} \\ $$$$\mathrm{So}\:\mathrm{testing}\:\mathrm{353}−\mathrm{1}^{\mathrm{2}} ,\mathrm{353}−\mathrm{2}^{\mathrm{2}} ,...,\mathrm{353}−\mathrm{18}^{\mathrm{2}} \\ $$$$\mathrm{we}\:'\mathrm{ll}\:\mathrm{find}\:\mathrm{that}\:\mathrm{m}=\mathrm{17},\mathrm{n}=\mathrm{8}\:. \\ $$$$\mathrm{m}^{\mathrm{2}} −\mathrm{n}^{\mathrm{2}} =\mathrm{17}^{\mathrm{2}} −\mathrm{8}^{\mathrm{2}} =\mathrm{225} \\ $$$$\mathrm{2mn}=\mathrm{2}×\mathrm{17}×\mathrm{8}=\mathrm{272} \\ $$$$\:\:\mathrm{272}^{\mathrm{2}} +\mathrm{225}^{\mathrm{2}} =\mathrm{353}^{\mathrm{2}} \\ $$

Answered by naka3546 last updated on 11/Mar/18

Commented by Rasheed.Sindhi last updated on 11/Mar/18

(a+b+353)(a+b−353)=2ab  The possibility of a+b+353 being only  2a,2b or ab  is only when a & b  be primes. But there′s no guaranty  of being prime of a and b.

$$\left({a}+{b}+\mathrm{353}\right)\left({a}+{b}−\mathrm{353}\right)=\mathrm{2}{ab} \\ $$$${The}\:{possibility}\:{of}\:{a}+{b}+\mathrm{353}\:{being}\:{only} \\ $$$$\mathrm{2}{a},\mathrm{2}{b}\:{or}\:{ab}\:\:{is}\:{only}\:{when}\:{a}\:\&\:{b} \\ $$$${be}\:{primes}.\:{But}\:{there}'\mathrm{s}\:{no}\:{guaranty} \\ $$$${of}\:{being}\:{prime}\:{of}\:{a}\:{and}\:{b}. \\ $$

Commented by Rasheed.Sindhi last updated on 11/Mar/18

G∞D trick to tronsform into factor form:  353^2 =a^2 +b^2         → (a+b+353)(a+b−353)=2ab

$$\mathcal{G}\infty\mathcal{D}\:{trick}\:{to}\:{tronsform}\:{into}\:{factor}\:{form}: \\ $$$$\mathrm{353}^{\mathrm{2}} ={a}^{\mathrm{2}} +{b}^{\mathrm{2}} \\ $$$$\:\:\:\:\:\:\rightarrow\:\left({a}+{b}+\mathrm{353}\right)\left({a}+{b}−\mathrm{353}\right)=\mathrm{2}{ab} \\ $$

Commented by mrW2 last updated on 11/Mar/18

very useful trick, see also  Q27936

$${very}\:{useful}\:{trick},\:{see}\:{also} \\ $$$${Q}\mathrm{27936} \\ $$

Commented by Rasheed.Sindhi last updated on 11/Mar/18

��

Terms of Service

Privacy Policy

Contact: info@tinkutara.com