Question and Answers Forum

All Questions      Topic List

Algebra Questions

Previous in All Question      Next in All Question      

Previous in Algebra      Next in Algebra      

Question Number 31594 by Nayon.Sm last updated on 11/Mar/18

Answered by Rasheed.Sindhi last updated on 11/Mar/18

a=0 ∣ b=0 ; No other integral solution.  −.−.−.−.−.−.−  If a^2 +b^2 =c^2  then there exist integers  m & n such that c=m^2 +n^2  ,{a,b}={m^2 -n^2 ,2mn}  So we have m^2 +n^2 =c=2179            n^2 =2179−m^2    I-e  2179−m^2   is perfect square of an  integer.              m^2 ≤2179⇒m≤46  m∈{0,±1,±2,±3,...,±46}  For no value of m  2179−m^2  is perfect  square.

$${a}=\mathrm{0}\:\mid\:{b}=\mathrm{0}\:;\:\mathrm{No}\:\mathrm{other}\:\mathrm{integral}\:\mathrm{solution}. \\ $$$$−.−.−.−.−.−.− \\ $$$$\mathrm{If}\:{a}^{\mathrm{2}} +{b}^{\mathrm{2}} ={c}^{\mathrm{2}} \:\mathrm{then}\:\mathrm{there}\:\mathrm{exist}\:\mathrm{integers} \\ $$$${m}\:\&\:{n}\:\mathrm{such}\:\mathrm{that}\:{c}={m}^{\mathrm{2}} +{n}^{\mathrm{2}} \:,\left\{{a},{b}\right\}=\left\{{m}^{\mathrm{2}} -{n}^{\mathrm{2}} ,\mathrm{2}{mn}\right\} \\ $$$$\mathrm{So}\:\mathrm{we}\:\mathrm{have}\:{m}^{\mathrm{2}} +{n}^{\mathrm{2}} ={c}=\mathrm{2179} \\ $$$$\:\:\:\:\:\:\:\:\:\:{n}^{\mathrm{2}} =\mathrm{2179}−{m}^{\mathrm{2}} \\ $$$$\:\mathrm{I}-\mathrm{e}\:\:\mathrm{2179}−{m}^{\mathrm{2}} \:\:\mathrm{is}\:\mathrm{perfect}\:\mathrm{square}\:\mathrm{of}\:\mathrm{an} \\ $$$$\mathrm{integer}. \\ $$$$\:\:\:\:\:\:\:\:\:\:\:\:{m}^{\mathrm{2}} \leqslant\mathrm{2179}\Rightarrow{m}\leqslant\mathrm{46} \\ $$$${m}\in\left\{\mathrm{0},\pm\mathrm{1},\pm\mathrm{2},\pm\mathrm{3},...,\pm\mathrm{46}\right\} \\ $$$$\mathrm{For}\:\mathrm{no}\:\mathrm{value}\:\mathrm{of}\:{m}\:\:\mathrm{2179}−{m}^{\mathrm{2}} \:\mathrm{is}\:\mathrm{perfect} \\ $$$$\mathrm{square}. \\ $$$$ \\ $$

Terms of Service

Privacy Policy

Contact: info@tinkutara.com