Question Number 29522 by 803jaideep@gmail.com last updated on 09/Feb/18 | ||
![]() | ||
Commented by 803jaideep@gmail.com last updated on 09/Feb/18 | ||
![]() | ||
$$\mathrm{40th}\:\mathrm{ques}\:\mathrm{sry} \\ $$ | ||
Commented by Tinkutara last updated on 09/Feb/18 | ||
120? | ||
Commented by 803jaideep@gmail.com last updated on 09/Feb/18 | ||
![]() | ||
$$\mathrm{yes}\:\mathrm{yes}\:\mathrm{but}\:\mathrm{how} \\ $$ | ||
Commented by Tinkutara last updated on 09/Feb/18 | ||
See Q 20739 | ||
Commented by math solver last updated on 10/Feb/18 | ||
![]() | ||
$${is}\:{the}\:{ans}.\:{of}\:{q}.\mathrm{39}\:{A}\:? \\ $$ | ||
Commented by prof Abdo imad last updated on 11/Feb/18 | ||
![]() | ||
$$\left.\mathrm{38}\right)\:{if}\:{z}={cos}\alpha+{isin}\alpha\:{let}\:{find}\:{arg}\left({z}^{\mathrm{2}} +{z}^{−} \right) \\ $$$${the}\:{moivre}\:{formula}\:{give}\:{z}^{\mathrm{2}} ={cos}\left(\mathrm{2}\alpha\right)+{isin}\left(\mathrm{2}\alpha\right) \\ $$$${amd}\:{z}^{−} =\:{cos}\:\alpha\:−{isin}\alpha\Rightarrow \\ $$$${z}^{\mathrm{2}} +{z}^{−} ={cos}\alpha\:+{cos}\left(\mathrm{2}\alpha\right)+{i}\left({sin}\left(\mathrm{2}\alpha\right)−{sin}\alpha\right) \\ $$$$=\:\mathrm{2}{cos}\left(\frac{\mathrm{3}\alpha}{\mathrm{2}}\right){cos}\left(\frac{\alpha}{\mathrm{2}}\right)+{i}\left({sin}\left(\mathrm{2}\alpha\right)−{sin}\alpha\right) \\ $$$${sinp}?−{sinq}=\:{cos}\left(\frac{\pi}{\mathrm{2}}−{p}\right)+{cos}\left(\frac{\pi}{\mathrm{2}}+{q}\right) \\ $$$$=\mathrm{2}{cos}\left(\frac{\pi−{p}+{q}}{\mathrm{2}}\right){cos}\frac{{p}+{q}}{\mathrm{2}}=\mathrm{2}{sin}\left(\frac{{p}−{q}}{\mathrm{2}}\right){cos}\left(\frac{{p}+{q}}{\mathrm{2}}\right) \\ $$$${sin}\left(\mathrm{2}\alpha\right)−{sin}\alpha=\mathrm{2}{sin}\left(\frac{\alpha}{\mathrm{2}}\right){cos}\left(\frac{\mathrm{3}\alpha}{\mathrm{2}}\right)\Rightarrow \\ $$$${z}^{\mathrm{2}} +{z}^{−} =\mathrm{2}\:{cos}\left(\frac{\mathrm{3}\alpha}{\mathrm{2}}\right)\left({cos}\left(\frac{\alpha}{\mathrm{2}}\right)\:+{isin}\left(\frac{\alpha}{\mathrm{2}}\right)\Rightarrow\right. \\ $$$${arg}\left({z}^{\mathrm{2}} +{z}^{−} \right)=\frac{\alpha}{\mathrm{2}}\:. \\ $$ | ||
Commented by math solver last updated on 11/Feb/18 | ||
![]() | ||
$$\mathrm{wow},\mathrm{sir}. \\ $$ | ||
Answered by 803jaideep@gmail.com last updated on 09/Feb/18 | ||
![]() | ||
$$\mathrm{10th} \\ $$ | ||