Question and Answers Forum

All Questions      Topic List

Algebra Questions

Previous in All Question      Next in All Question      

Previous in Algebra      Next in Algebra      

Question Number 25457 by Tinkutara last updated on 10/Dec/17

Answered by prakash jain last updated on 10/Dec/17

n^2 +n+1=an(n−1)+bn+c  n(n−1)+2n+1  Σ_(i=1) ^n (−1)^i ((i^2 +i+1)/(i!))  =Σ_(i=1) ^n (−1)^i ((i(i−1)+2i+1)/(i!))  =Σ_(i=2) ^n (−1)^i (1/((i−2)!))+Σ_(i=1) ^n (−1)^i (2/((i−1)!))+Σ_(i=1) ^n (((−1)^i )/(i!))  expand and sum−some term will  cancel

$${n}^{\mathrm{2}} +{n}+\mathrm{1}={an}\left({n}−\mathrm{1}\right)+{bn}+{c} \\ $$$${n}\left({n}−\mathrm{1}\right)+\mathrm{2}{n}+\mathrm{1} \\ $$$$\underset{{i}=\mathrm{1}} {\overset{{n}} {\sum}}\left(−\mathrm{1}\right)^{{i}} \frac{{i}^{\mathrm{2}} +{i}+\mathrm{1}}{{i}!} \\ $$$$=\underset{{i}=\mathrm{1}} {\overset{{n}} {\sum}}\left(−\mathrm{1}\right)^{{i}} \frac{{i}\left({i}−\mathrm{1}\right)+\mathrm{2}{i}+\mathrm{1}}{{i}!} \\ $$$$=\underset{{i}=\mathrm{2}} {\overset{{n}} {\sum}}\left(−\mathrm{1}\right)^{{i}} \frac{\mathrm{1}}{\left({i}−\mathrm{2}\right)!}+\underset{{i}=\mathrm{1}} {\overset{{n}} {\sum}}\left(−\mathrm{1}\right)^{{i}} \frac{\mathrm{2}}{\left({i}−\mathrm{1}\right)!}+\underset{{i}=\mathrm{1}} {\overset{{n}} {\sum}}\frac{\left(−\mathrm{1}\right)^{{i}} }{{i}!} \\ $$$${expand}\:{and}\:{sum}−{some}\:{term}\:{will} \\ $$$${cancel} \\ $$

Commented by Tinkutara last updated on 10/Dec/17

Yes Sir thanks it telescopes

Terms of Service

Privacy Policy

Contact: info@tinkutara.com