Question and Answers Forum

All Questions      Topic List

Limits Questions

Previous in All Question      Next in All Question      

Previous in Limits      Next in Limits      

Question Number 23688 by A1B1C1D1 last updated on 04/Nov/17

Answered by $@ty@m last updated on 04/Nov/17

Use method of rationalization  =lim_(x→0)    ((x^2 ((√(x^2 +12))+(√(12))))/(x^2 +12−12))  =lim_(x→0)    ((x^2 ((√(x^2 +12))+(√(12))))/x^2 )  =lim_(x→0)    ((√(x^2 +12))+(√(12)))  =(√(12))+(√(12))  =2(√(12))  =4(√3)

$${Use}\:{method}\:{of}\:{rationalization} \\ $$$$=\underset{{x}\rightarrow\mathrm{0}} {\mathrm{lim}}\:\:\:\frac{{x}^{\mathrm{2}} \left(\sqrt{{x}^{\mathrm{2}} +\mathrm{12}}+\sqrt{\mathrm{12}}\right)}{{x}^{\mathrm{2}} +\mathrm{12}−\mathrm{12}} \\ $$$$=\underset{{x}\rightarrow\mathrm{0}} {\mathrm{lim}}\:\:\:\frac{{x}^{\mathrm{2}} \left(\sqrt{{x}^{\mathrm{2}} +\mathrm{12}}+\sqrt{\mathrm{12}}\right)}{{x}^{\mathrm{2}} } \\ $$$$=\underset{{x}\rightarrow\mathrm{0}} {\mathrm{lim}}\:\:\:\left(\sqrt{{x}^{\mathrm{2}} +\mathrm{12}}+\sqrt{\mathrm{12}}\right) \\ $$$$=\sqrt{\mathrm{12}}+\sqrt{\mathrm{12}} \\ $$$$=\mathrm{2}\sqrt{\mathrm{12}} \\ $$$$=\mathrm{4}\sqrt{\mathrm{3}} \\ $$

Terms of Service

Privacy Policy

Contact: info@tinkutara.com