Question and Answers Forum

All Questions      Topic List

Trigonometry Questions

Previous in All Question      Next in All Question      

Previous in Trigonometry      Next in Trigonometry      

Question Number 22730 by selestian last updated on 22/Oct/17

Commented by math solver last updated on 22/Oct/17

−1. we know tan is positive in   1st and 3rd quadrant .  so there are infinite values which  we can take .  say we take 60 degree and 240 degree.

$$−\mathrm{1}.\:{we}\:{know}\:{tan}\:{is}\:{positive}\:{in}\: \\ $$$$\mathrm{1}{st}\:{and}\:\mathrm{3}{rd}\:{quadrant}\:. \\ $$$${so}\:{there}\:{are}\:{infinite}\:{values}\:{which} \\ $$$${we}\:{can}\:{take}\:. \\ $$$${say}\:{we}\:{take}\:\mathrm{60}\:{degree}\:{and}\:\mathrm{240}\:{degree}. \\ $$

Commented by selestian last updated on 22/Oct/17

yes you are right thAnks i got the answer

$${yes}\:{you}\:{are}\:{right}\:{thAnks}\:{i}\:{got}\:{the}\:{answer} \\ $$$$ \\ $$

Answered by ajfour last updated on 22/Oct/17

let the smaller angle be θ_1 .       0 ≤θ_1 ≤ π  Then θ_2 =θ_1 +π  ⇒ tan (θ_2 /2)= tan ((θ_1 /2)+(π/2))  ⇒ tan (θ_2 /2)=−cot (θ_1 /2)  ⇒  tan (θ_1 /2)tan (θ_2 /2) =−1 .

$${let}\:{the}\:{smaller}\:{angle}\:{be}\:\theta_{\mathrm{1}} . \\ $$$$\:\:\:\:\:\mathrm{0}\:\leqslant\theta_{\mathrm{1}} \leqslant\:\pi \\ $$$${Then}\:\theta_{\mathrm{2}} =\theta_{\mathrm{1}} +\pi \\ $$$$\Rightarrow\:\mathrm{tan}\:\frac{\theta_{\mathrm{2}} }{\mathrm{2}}=\:\mathrm{tan}\:\left(\frac{\theta_{\mathrm{1}} }{\mathrm{2}}+\frac{\pi}{\mathrm{2}}\right) \\ $$$$\Rightarrow\:\mathrm{tan}\:\frac{\theta_{\mathrm{2}} }{\mathrm{2}}=−\mathrm{cot}\:\frac{\theta_{\mathrm{1}} }{\mathrm{2}} \\ $$$$\Rightarrow\:\:\mathrm{tan}\:\frac{\theta_{\mathrm{1}} }{\mathrm{2}}\mathrm{tan}\:\frac{\theta_{\mathrm{2}} }{\mathrm{2}}\:=−\mathrm{1}\:. \\ $$

Terms of Service

Privacy Policy

Contact: info@tinkutara.com